Summary
Segmentation in biology is the division of some animal and plant body plans into a series of repetitive segments. This article focuses on the segmentation of animal body plans, specifically using the examples of the taxa Arthropoda, Chordata, and Annelida. These three groups form segments by using a "growth zone" to direct and define the segments. While all three have a generally segmented body plan and use a growth zone, they use different mechanisms for generating this patterning. Even within these groups, different organisms have different mechanisms for segmenting the body. Segmentation of the body plan is important for allowing free movement and development of certain body parts. It also allows for regeneration in specific individuals. Segmentation is a difficult process to satisfactorily define. Many taxa (for example the molluscs) have some form of serial repetition in their units but are not conventionally thought of as segmented. Segmented animals are those considered to have organs that were repeated, or to have a body composed of self-similar units, but usually it is the parts of an organism that are referred to as being segmented. Segmentation in animals typically falls into three types, characteristic of different arthropods, vertebrates, and annelids. Arthropods such as the fruit fly form segments from a field of equivalent cells based on transcription factor gradients. Vertebrates like the zebrafish use oscillating gene expression to define segments known as somites. Annelids such as the leech use smaller blast cells budded off from large teloblast cells to define segments. Although Drosophila segmentation is not representative of the arthropod phylum in general, it is the most highly studied. Early screens to identify genes involved in cuticle development led to the discovery of a class of genes that was necessary for proper segmentation of the Drosophila embryo. To properly segment the Drosophila embryo, the anterior-posterior axis is defined by maternally supplied transcripts giving rise to gradients of these proteins.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.