Selfish genetic elements (historically also referred to as selfish genes, ultra-selfish genes, selfish DNA, parasitic DNA and genomic outlaws) are genetic segments that can enhance their own transmission at the expense of other genes in the genome, even if this has no positive or a net negative effect on organismal fitness. Genomes have traditionally been viewed as cohesive units, with genes acting together to improve the fitness of the organism. However, when genes have some control over their own transmission, the rules can change, and so just like all social groups, genomes are vulnerable to selfish behaviour by their parts.
Early observations of selfish genetic elements were made almost a century ago, but the topic did not get widespread attention until several decades later. Inspired by the gene-centred views of evolution popularized by George Williams and Richard Dawkins, two papers were published back-to-back in Nature in 1980 – by Leslie Orgel and Francis Crick and by Ford Doolittle and Carmen Sapienza – introducing the concept of selfish genetic elements (at the time called "selfish DNA") to the wider scientific community. Both papers emphasized that genes can spread in a population regardless of their effect on organismal fitness as long as they have a transmission advantage.
Selfish genetic elements have now been described in most groups of organisms, and they demonstrate a remarkable diversity in the ways by which they promote their own transmission. Though long dismissed as genetic curiosities, with little relevance for evolution, they are now recognized to affect a wide swath of biological processes, ranging from genome size and architecture to speciation.
Observations of what is now referred to as selfish genetic elements go back to the early days in the history of genetics. Already in 1928, Russian geneticist Sergey Gershenson reported the discovery of a driving X chromosome in Drosophila obscura. Crucially, he noted that the resulting female-biased sex ratio may drive a population extinct (see Species extinction).
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
This advanced Bachelor/Master level course will cover fundamentals and approaches at the interface of biology, chemistry, engineering and computer science for diverse fields of synthetic biology. This
Intragenomic conflict refers to the evolutionary phenomenon where genes have phenotypic effects that promote their own transmission in detriment of the transmission of other genes that reside in the same genome. The selfish gene theory postulates that natural selection will increase the frequency of those genes whose phenotypic effects cause their transmission to new organisms, and most genes achieve this by cooperating with other genes in the same genome to build an organism capable of reproducing and/or helping kin to reproduce.
Genome size is the total amount of DNA contained within one copy of a single complete genome. It is typically measured in terms of mass in picograms (trillionths (10−12) of a gram, abbreviated pg) or less frequently in daltons, or as the total number of nucleotide base pairs, usually in megabases (millions of base pairs, abbreviated Mb or Mbp). One picogram is equal to 978 megabases. In diploid organisms, genome size is often used interchangeably with the term C-value.
Population genetics is a subfield of genetics that deals with genetic differences within and among populations, and is a part of evolutionary biology. Studies in this branch of biology examine such phenomena as adaptation, speciation, and population structure. Population genetics was a vital ingredient in the emergence of the modern evolutionary synthesis. Its primary founders were Sewall Wright, J. B. S. Haldane and Ronald Fisher, who also laid the foundations for the related discipline of quantitative genetics.
Growing evidence indicates that transposable elements (TEs) play important roles in evolution by providing genomes with coding and non-coding sequences. Identification of TE-derived functional elements, however, has relied on TE annotations in individual s ...
2024
, , ,
In response to predation by bacteriophages and invasion by other mobile genetic elements such as plasmids, bacteria have evolved specialised defence systems that are often clustered together on genomic islands. The O1 El Tor strains of Vibrio cholerae resp ...
The adaptation of organisms to their environment depends on the innovative potential inherent to genetic variation. In complex organisms such as mammals, processes like development and immunity require tight gene regulation. Complex forms emerge more often ...