Electroplating, also known as electrochemical deposition or electrodeposition, is a process for producing a metal coating on a solid substrate through the reduction of cations of that metal by means of a direct electric current. The part to be coated acts as the cathode (negative electrode) of an electrolytic cell; the electrolyte is a solution of a salt of the metal to be coated; and the anode (positive electrode) is usually either a block of that metal, or of some inert conductive material. The current is provided by an external power supply.
Electroplating is widely used in industry and decorative arts to improve the surface qualities of objects—such as resistance to abrasion and corrosion, lubricity, reflectivity, electrical conductivity, or appearance. It is used to build up thickness on undersized or worn-out parts, or to manufacture metal plates with complex shape, a process called electroforming. It is used to deposit copper and other conductors in forming printed circuit boards, and copper interconnects in integrated circuits. It is also used to purify metals such as copper.
The term "electroplating" may also be used occasionally for processes that use an electric current to achieve oxidation of anions on to a solid substrate, as in the formation of silver chloride on silver wire to make silver/silver-chloride (AgCl) electrodes.
Electropolishing, a process that uses an electric current to remove metal cations from the surface of a metal object, is the reverse of the process of electroplating.
Throwing power is an important parameter that provides a measure of the uniformity of electroplating current, and consequently the uniformity of the electroplated metal thickness, on regions of the part that are near to the anode compared to regions that are far from it. It depends mostly on the composition and temperature of the electroplating solution.
Electrotyping and Electroforming
The electrolyte in the electrolytic plating cell should contain positive ions (cations) of the metal to be deposited.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
The student will learn procedures and applications of modern microfabrication technologies, as practiced in a clean room environment, in particular modern techniques that go beyond the classical steps
Intro into the relation between physical and structural properties; introduction into different X-Ray techniques; examples of successful technological transfer using X-Ray techniques;
Structural prope
The students will learn about the essential chemical, thermodynamic and physical mechanisms governing thin film growth, about the most important process techniques and their typical features, includin
Copper is a chemical element with the symbol Cu (from cuprum) and atomic number 29. It is a soft, malleable, and ductile metal with very high thermal and electrical conductivity. A freshly exposed surface of pure copper has a pinkish-orange color. Copper is used as a conductor of heat and electricity, as a building material, and as a constituent of various metal alloys, such as sterling silver used in jewelry, cupronickel used to make marine hardware and coins, and constantan used in strain gauges and thermocouples for temperature measurement.
Redox (ˈrɛdɒks , ˈriːdɒks , reduction–oxidation or oxidation–reduction) is a type of chemical reaction in which the oxidation states of substrate change. Oxidation is the loss of electrons or an increase in the oxidation state, while reduction is the gain of electrons or a decrease in the oxidation state. There are two classes of redox reactions: Electron-transfer – Only one (usually) electron flows from the atom being oxidized to the atom that is reduced. This type of redox reaction is often discussed in terms of redox couples and electrode potentials.
Cobalt is a chemical element with the symbol Co and atomic number 27. As with nickel, cobalt is found in the Earth's crust only in a chemically combined form, save for small deposits found in alloys of natural meteoric iron. The free element, produced by reductive smelting, is a hard, lustrous, silver metal. Cobalt-based blue pigments (cobalt blue) have been used since ancient times for jewelry and paints, and to impart a distinctive blue tint to glass, but the color was for a long time thought to be due to the known metal bismuth.
Explores electroplating fundamentals, including mass transport, electrodeposits, and biosensors, emphasizing the importance of electrochemical characterisation methods and biomedical sensors.
Polarimetric angle-resolved second-harmonic scattering (AR-SHS) is an all-optical tool enabling the study of unlabeled interfaces of nano-sized particles in an aqueous solution. As the second harmonic signal is modulated by interference between nonlinear c ...
AIP Publishing2023
,
Aqueous zinc-ion batteries (AZIBs) have gained significant attentions for their inherent safety and cost-effectiveness. However, challenges, such as dendrite growth and anodic corrosion at the Zn anode, hinder their commercial viability. In this paper, an ...
This Thesis provides a comprehensive and correlative investigation of the microstructure, chemical state, and electrochemical reactivity of manganese oxide (MnOx) films, aiming to gain a deeper understanding of the deposition and dissolution mechanism of M ...