In mathematics, a Casimir element (also known as a Casimir invariant or Casimir operator) is a distinguished element of the center of the universal enveloping algebra of a Lie algebra. A prototypical example is the squared angular momentum operator, which is a Casimir element of the three-dimensional rotation group.
More generally, Casimir elements can be used to refer to any element of the center of the universal enveloping algebra. The algebra of these elements is known to be isomorphic to a polynomial algebra through the Harish-Chandra isomorphism.
The Casimir element is named after Hendrik Casimir, who identified them in his description of rigid body dynamics in 1931.
The most commonly-used Casimir invariant is the quadratic invariant. It is the simplest to define, and so is given first. However, one may also have Casimir invariants of higher order, which correspond to homogeneous symmetric polynomials of higher order.
Suppose that is an -dimensional Lie algebra. Let B be a nondegenerate bilinear form on that is invariant under the adjoint action of on itself, meaning that for all X, Y, Z in . (The most typical choice of B is the Killing form if is semisimple.)
Let
be any basis of , and
be the dual basis of with respect to B. The Casimir element for B is the element of the universal enveloping algebra given by the formula
Although the definition relies on a choice of basis for the Lie algebra, it is easy to show that Ω is independent of this choice. On the other hand, Ω does depend on the bilinear form B. The invariance of B implies that the Casimir element commutes with all elements of the Lie algebra , and hence lies in the center of the universal enveloping algebra .
Given a representation ρ of on a vector space V, possibly infinite-dimensional, the Casimir invariant of ρ is defined to be ρ(Ω), the linear operator on V given by the formula
A specific form of this construction plays an important role in differential geometry and global analysis. Suppose that a connected Lie group G with Lie algebra acts on a differentiable manifold M.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Presentation of Wightman's axiomatic framework to QFT as well as to the necessary mathematical objects to their understanding (Hilbert analysis, distributions, group representations,...).Proofs of
The goal of the course is to introduce relativistic quantum field theory as the conceptual and mathematical framework describing fundamental interactions.
In quantum mechanics, the angular momentum operator is one of several related operators analogous to classical angular momentum. The angular momentum operator plays a central role in the theory of atomic and molecular physics and other quantum problems involving rotational symmetry. Such an operator is applied to a mathematical representation of the physical state of a system and yields an angular momentum value if the state has a definite value for it.
In mathematics, the structure constants or structure coefficients of an algebra over a field are the coefficients of the basis expansion (into linear combination of basis vectors) of the products of basis vectors. Because the product operation in the algebra is bilinear, by linearity knowing the product of basis vectors allows to compute the product of any elements (just like a matrix allows to compute the action of the linear operator on any vector by providing the action of the operator on basis vectors).
In quantum mechanics, the canonical commutation relation is the fundamental relation between canonical conjugate quantities (quantities which are related by definition such that one is the Fourier transform of another). For example, between the position operator x and momentum operator px in the x direction of a point particle in one dimension, where [x , px] = x px − px x is the commutator of x and px , i is the imaginary unit, and ħ is the reduced Planck's constant h/2π, and is the unit operator.
The boundary correlation functions for a quantum field theory (QFT) in a fixed anti-de Sitter (AdS) background should reduce to S-matrix elements in the flat-space limit. We consider this procedure in detail for four-point functions. With minimal assumptio ...
AMER PHYSICAL SOC2023
,
We develop structure-preserving reduced basis methods for a large class of nondissipative problems by resorting to their formulation as Hamiltonian dynamical systems. With this perspective, the phase space is naturally endowed with a Poisson manifold struc ...
We include vortices in the superfluid EFT for four dimensional CFTs at large global charge. Using the state-operator correspondence, vortices are mapped to charged operators with large spin and we compute their scaling dimensions. Different regimes are ide ...