Megathrust earthquakeMegathrust earthquakes occur at convergent plate boundaries, where one tectonic plate is forced underneath another. The earthquakes are caused by slip along the thrust fault that forms the contact between the two plates. These interplate earthquakes are the planet's most powerful, with moment magnitudes (Mw) that can exceed 9.0. Since 1900, all earthquakes of magnitude 9.0 or greater have been megathrust earthquakes.
Seafloor spreadingSeafloor spreading or Seafloor spread is a process that occurs at mid-ocean ridges, where new oceanic crust is formed through volcanic activity and then gradually moves away from the ridge. Earlier theories by Alfred Wegener and Alexander du Toit of continental drift postulated that continents in motion "plowed" through the fixed and immovable seafloor. The idea that the seafloor itself moves and also carries the continents with it as it spreads from a central rift axis was proposed by Harold Hammond Hess from Princeton University and Robert Dietz of the U.
Ring of FireThe Ring of Fire (also known as the Pacific Ring of Fire, the Rim of Fire, the Girdle of Fire or the Circum-Pacific belt) is a region around much of the rim of the Pacific Ocean where many volcanic eruptions and earthquakes occur. The Ring of Fire is a horseshoe-shaped belt about long and up to about wide. The Ring of Fire includes the Pacific coasts of South America, North America, Russia's Kamchatka Peninsula, and some islands in the western Pacific Ocean.
Mariana TrenchThe Mariana Trench is an oceanic trench located in the western Pacific Ocean, about east of the Mariana Islands; it is the deepest oceanic trench on Earth. It is crescent-shaped and measures about in length and in width. The maximum known depth is at the southern end of a small slot-shaped valley in its floor known as the Challenger Deep. The deepest point of the trench is more than farther from sea level than the peak of Mount Everest.
EarthquakeAn earthquake (also known as a quake, tremor or temblor) is the shaking of the surface of the Earth resulting from a sudden release of energy in the Earth's lithosphere that creates seismic waves. Earthquakes can range in intensity, from those that are so weak that they cannot be felt, to those violent enough to propel objects and people into the air, damage critical infrastructure, and wreak destruction across entire cities. The seismic activity of an area is the frequency, type, and size of earthquakes experienced over a particular time.
Oceanic trenchOceanic trenches are prominent, long, narrow topographic depressions of the ocean floor. They are typically wide and below the level of the surrounding oceanic floor, but can be thousands of kilometers in length. There are about of oceanic trenches worldwide, mostly around the Pacific Ocean, but also in the eastern Indian Ocean and a few other locations. The greatest ocean depth measured is in the Challenger Deep of the Mariana Trench, at a depth of below sea level. Oceanic trenches are a feature of the Earth's distinctive plate tectonics.
Plate tectonicsPlate tectonics (from the tectonicus, from the τεκτονικός) is the scientific theory that Earth's lithosphere comprises a number of large tectonic plates which have been slowly moving since about 3.4 billion years ago. The model builds on the concept of continental drift, an idea developed during the first decades of the 20th century. Plate tectonics came to be accepted by geoscientists after seafloor spreading was validated in the mid-to-late 1960s.
Challenger DeepThe Challenger Deep is the deepest known point of the seabed of Earth. Its depth is measured at by direct measurement from deep-diving submersibles, remotely operated underwater vehicles and benthic landers, and (sometimes) slightly more by sonar bathymetry. The Challenger Deep is located in the western Pacific Ocean, at the southern end of the Mariana Trench, near the Mariana Islands. According to the August 2011 version of the GEBCO Gazetteer of Undersea Feature Names, the Challenger Deep is deep at .
Cascadia subduction zoneThe Cascadia subduction zone is a 960 km (600 mi) fault at a convergent plate boundary, about 112-160 km (70-100 mi) off the Pacific Shore, that stretches from northern Vancouver Island in Canada to Northern California in the United States. It is capable of producing 9.0+ magnitude earthquakes and tsunamis that could reach 30m (100 ft). The Oregon Department of Emergency Management estimates shaking would last 5-7 minutes along the coast, with strength and intensity decreasing further from the epicenter.