The memory controller is a digital circuit that manages the flow of data going to and from the computer's main memory. A memory controller can be a separate chip or integrated into another chip, such as being placed on the same die or as an integral part of a microprocessor; in the latter case, it is usually called an integrated memory controller (IMC). A memory controller is sometimes also called a memory chip controller (MCC) or a memory controller unit (MCU).
A common form of memory controller is the memory management unit (MMU) which in many operating systems implements virtual addressing.
Most modern desktop or workstation microprocessors use an integrated memory controller (IMC), including microprocessors from Intel, AMD, and those built around the ARM architecture.
Prior to K8 (circa 2003), AMD microprocessors had a memory controller implemented on their motherboard's northbridge. In K8 and later, AMD employed an integrated memory controller. Likewise, until Nehalem (circa 2008), Intel microprocessors used memory controllers implemented on the motherboard's northbridge. Nehalem and later switched to an integrated memory controller.
Other examples of microprocessors that use integrated memory controllers include NVIDIA's Fermi, IBM's POWER5, and Sun Microsystems's UltraSPARC T1.
While an integrated memory controller has the potential to increase the system's performance, such as by reducing memory latency, it locks the microprocessor to a specific type (or types) of memory, forcing a redesign in order to support newer memory technologies. When DDR2 SDRAM was introduced, AMD released new Athlon 64 CPUs. These new models, with a DDR2 controller, use a different physical socket (known as Socket AM2), so that they will only fit in motherboards designed for the new type of RAM. When the memory controller is not on-die, the same CPU may be installed on a new motherboard, with an updated northbridge.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Multiprocessors are a core component in all types of computing infrastructure, from phones to datacenters. This course will build on the prerequisites of processor design and concurrency to introduce
Multiprocessors are now the defacto building blocks for all computer systems. This course will build upon the basic concepts offered in Computer Architecture I to cover the architecture and organizati
L'objectif de ce cours est d'introduire les étudiants à la pensée algorithmique, de les familiariser avec les fondamentaux de l'Informatique et de développer une première compétence en programmation (
Intel Core is a line of streamlined midrange consumer, workstation and enthusiast computer central processing units (CPUs) marketed by Intel Corporation. These processors displaced the existing mid- to high-end Pentium processors at the time of their introduction, moving the Pentium to the entry level. Identical or more capable versions of Core processors are also sold as Xeon processors for the server and workstation markets. The lineup of Core processors includes the Intel Core i3, Intel Core i5, Intel Core i7, and Intel Core i9, along with the X-series of Intel Core CPUs.
Memory refresh is the process of periodically reading information from an area of computer memory and immediately rewriting the read information to the same area without modification, for the purpose of preserving the information. Memory refresh is a background maintenance process required during the operation of semiconductor dynamic random-access memory (DRAM), the most widely used type of computer memory, and in fact is the defining characteristic of this class of memory.
Nehalem nəˈheɪləm is the codename for Intel's 45 nm microarchitecture released in November 2008. It was used in the first-generation of the Intel Core i5 and i7 processors, and succeeds the older Core microarchitecture used on Core 2 processors. The term "Nehalem" comes from the Nehalem River. Nehalem is built on the 45 nm process, is able to run at higher clock speeds, and is more energy-efficient than Penryn microprocessors. Hyper-threading is reintroduced, along with a reduction in L2 cache size, as well as an enlarged L3 cache that is shared among all cores.
Driven by the demand for real-time processing and the need to minimize latency in AI algorithms, edge computing has experienced remarkable progress. Decision-making AI applications stand out for their heavy reliance on data-centric operations, predominantl ...
EPFL2024
, , , , ,
Coarse-Grain Reconfigurable Arrays (CGRAs) represent emerging low-power architectures designed to accelerate Compute-Intensive Loops (CILs). The effectiveness of CGRAs in providing acceleration relies on the quality of mapping: how efficiently the CIL is c ...
2024
, , , , , , ,
Memory devices have returned to the spotlight due to increasing interest in using in-memory computing architectures to make data-driven algorithms more energy-efficient. One of the main advantages of this architecture is the efficient performance of vector ...