In geometry, a locus (plural: loci) (Latin word for "place", "location") is a set of all points (commonly, a line, a line segment, a curve or a surface), whose location satisfies or is determined by one or more specified conditions.
The set of the points that satisfy some property is often called the locus of a point satisfying this property. The use of the singular in this formulation is a witness that, until the end of the 19th century, mathematicians did not consider infinite sets. Instead of viewing lines and curves as sets of points, they viewed them as places where a point may be located or may move.
Until the beginning of the 20th century, a geometrical shape (for example a curve) was not considered as an infinite set of points; rather, it was considered as an entity on which a point may be located or on which it moves. Thus a circle in the Euclidean plane was defined as the locus of a point that is at a given distance of a fixed point, the center of the circle. In modern mathematics, similar concepts are more frequently reformulated by describing shapes as sets; for instance, one says that the circle is the set of points that are at a given distance from the center.
In contrast to the set-theoretic view, the old formulation avoids considering infinite collections, as avoiding the actual infinite was an important philosophical position of earlier mathematicians.
Once set theory became the universal basis over which the whole mathematics is built, the term of locus became rather old-fashioned. Nevertheless, the word is still widely used, mainly for a concise formulation, for example:
Critical locus, the set of the critical points of a differentiable function.
Zero locus or vanishing locus, the set of points where a function vanishes, in that it takes the value zero.
Singular locus, the set of the singular points of an algebraic variety.
Connectedness locus, the subset of the parameter set of a family of rational functions for which the Julia set of the function is connected.