The fertility factor (first named F by one of its discoverers Esther Lederberg; also called the sex factor in E. coli or the F sex factor; also called F-plasmid) allows genes to be transferred from one bacterium carrying the factor to another bacterium lacking the factor by conjugation. The F factor was the first plasmid to be discovered. Unlike other plasmids, F factor is constitutive for transfer proteins due to a mutation in the gene finO. The F plasmid belongs to a class of conjugative plasmids that control sexual functions of bacteria with a fertility inhibition (Fin) system.
Esther M. Lederberg and Luigi L. Cavalli-Sforza discovered "F," subsequently publishing with Joshua Lederberg. Once her results were announced, two other labs joined the studies. "This was not a simultaneous independent discovery of F (I names as Fertility Factor until it was understood.) We wrote to Hayes, Jacob, & Wollman who then proceeded with their studies." The discovery of "F" has sometimes been confused with William Hayes' discovery of "sex factor", though he never claimed priority. Indeed, "he [Hayes] thought F was really lambda, and when we convinced him [that it was not], he then began his work."
The most common functional segments constituting F factors are:
OriT (Origin of Transfer): The sequence which marks the starting point of conjugative transfer.
OriV (Origin of Vegetative Replication): The sequence starting with which the plasmid-DNA will be replicated in the recipient cell.
tra-region (transfer genes): Genes coding the F-Pilus and DNA transfer process.
IS (Insertion Elements) composed of one copy of IS2, two copies of IS3, and one copy of IS1000: so-called "selfish genes" (sequence fragments which can integrate copies of themselves at different locations).
Some F plasmid genes and their Function:
traA: F-pilin, Major subunit of the F-pilus.
The episome that harbors the F factor can exist as an independent plasmid or integrate into the bacterial cell's genome.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Les étudiants appliquent des techniques de base en biologie moléculaire pour cloner un cDNA d'intérêt dans un plasmide d'expression afin de produire la protéine correspondante dans des cellules de mam
Les étudiants appliquent des techniques de base en biologie moléculaire pour cloner un cDNA d'intérêt dans un plasmide d'expression afin de produire la protéine correspondante dans des cellules de mam
Les constituants biochimiques de l'organisme, protéines, glucides, lipides, à la lumière de l'évolution des concepts et des progrès en biologie moléculaire et génétique, sont étudiés.
Covers genetic engineering, FRET sensors, PCR cloning, and DNA constructs for practical applications.
Delves into protein synthesis, emphasizing recombinant expression and the production of proteins using plasmids and bacteria.
Covers the process of expressing and purifying proteins, including the importance of studying protein function, folding, interactions, sequence, and structure.
Horizontal gene transfer can trigger rapid shifts in bacterial evolution. Driven by a variety of mobile genetic elements—in particular bacteriophages and plasmids—the ability to share genes within and across species underpins the exceptional adaptability o ...
The bacterium Vibrio cholerae is the causative agent of the diarrheal disease cholera, which affects millions of people every year. Apart from being a human pathogen, V. cholerae is also a common member of aquatic habitats. Whilst the mechanism that allow ...
Seventh pandemic Vibrio cholerae strains contain two pathogenicity islands that encode the DNA defense modules DdmABC and DdmDE. Here we use cryogenic electron microscopy to reveal the mechanistic basis for plasmid defense by DdmDE. A structure of the DdmD ...