Are you an EPFL student looking for a semester project?
Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.
The N-terminus (also known as the amino-terminus, NH2-terminus, N-terminal end or amine-terminus) is the start of a protein or polypeptide, referring to the free amine group (-NH2) located at the end of a polypeptide. Within a peptide, the amine group is bonded to the carboxylic group of another amino acid, making it a chain. That leaves a free carboxylic group at one end of the peptide, called the C-terminus, and a free amine group on the other end called the N-terminus. By convention, peptide sequences are written N-terminus to C-terminus, left to right (in LTR writing systems). This correlates the translation direction to the text direction, because when a protein is translated from messenger RNA, it is created from the N-terminus to the C-terminus, as amino acids are added to the carboxyl end of the protein. Each amino acid has an amine group and a carboxylic group. Amino acids link to one another by peptide bonds which form through a dehydration reaction that joins the carboxyl group of one amino acid to the amine group of the next in a head-to-tail manner to form a polypeptide chain. The chain has two ends – an amine group, the N-terminus, and an unbound carboxyl group, the C-terminus. When a protein is translated from messenger RNA, it is created from N-terminus to C-terminus. The amino end of an amino acid (on a charged tRNA) during the elongation stage of translation, attaches to the carboxyl end of the growing chain. Since the start codon of the genetic code codes for the amino acid methionine, most protein sequences start with a methionine (or, in bacteria, mitochondria and chloroplasts, the modified version N-formylmethionine, fMet). However, some proteins are modified posttranslationally, for example, by cleavage from a protein precursor, and therefore may have different amino acids at their N-terminus. The N-terminus is the first part of the protein that exits the ribosome during protein biosynthesis. It often contains signal peptide sequences, "intracellular postal codes" that direct delivery of the protein to the proper organelle.
Alkynes are found in a multitude of natural or synthetic bioactive compounds. In addition to the capacity of these chemical motifs to impact the physicochemical properties of a molecule of interest, the well-established reactivity of alkynes makes them ...
Jérôme Waser, Christian Heinis, Xinjian Ji, Xingyu Liu
Pierre Gönczy, Beat Fierz, Luc Reymond, Georgios Hatzopoulos, Cédric Pourroy, Po-Han Chang, Nora Guidotti, Ninad Dilip Agashe, Timothy Matthias Reichart, Eduard Hubert Theodoor Marius Ebberink, Fabian Zacharias Schneider