Concept

Signed number representations

Summary
In computing, signed number representations are required to encode negative numbers in binary number systems. In mathematics, negative numbers in any base are represented by prefixing them with a minus sign ("−"). However, in RAM or CPU registers, numbers are represented only as sequences of bits, without extra symbols. The four best-known methods of extending the binary numeral system to represent signed numbers are: sign–magnitude, ones' complement, two's complement, and offset binary. Some of the alternative methods use implicit instead of explicit signs, such as negative binary, using the base −2. Corresponding methods can be devised for other bases, whether positive, negative, fractional, or other elaborations on such themes. There is no definitive criterion by which any of the representations is universally superior. For integers, the representation used in most current computing devices is two's complement, although the Unisys ClearPath Dorado series mainframes use ones' complement. The early days of digital computing were marked by competing ideas about both hardware technology and mathematics technology (numbering systems). One of the great debates was the format of negative numbers, with some of the era's top experts expressing very strong and differing opinions. One camp supported two's complement, the system that is dominant today. Another camp supported ones' complement, where a negative value is formed by inverting all of the bits in its positive equivalent. A third group supported sign–magnitude, where a value is changed from positive to negative simply by toggling the word's highest-order bit. There were arguments for and against each of the systems. Sign–magnitude allowed for easier tracing of memory dumps (a common process in the 1960s) as small numeric values use fewer 1 bits. These systems did ones' complement math internally, so numbers would have to be converted to ones' complement values when they were transmitted from a register to the math unit and then converted back to sign–magnitude when the result was transmitted back to the register.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related publications

Loading

Related people

Loading

Related units

Loading

Related concepts

Loading

Related courses

Loading

Related lectures

Loading

Related MOOCs

Loading