**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of GraphSearch.

Concept# Signed number representations

Summary

In computing, signed number representations are required to encode negative numbers in binary number systems.
In mathematics, negative numbers in any base are represented by prefixing them with a minus sign ("−"). However, in RAM or CPU registers, numbers are represented only as sequences of bits, without extra symbols. The four best-known methods of extending the binary numeral system to represent signed numbers are: sign–magnitude, ones' complement, two's complement, and offset binary. Some of the alternative methods use implicit instead of explicit signs, such as negative binary, using the base −2. Corresponding methods can be devised for other bases, whether positive, negative, fractional, or other elaborations on such themes.
There is no definitive criterion by which any of the representations is universally superior. For integers, the representation used in most current computing devices is two's complement, although the Unisys ClearPath Dorado series mainframes use ones' complement.
The early days of digital computing were marked by competing ideas about both hardware technology and mathematics technology (numbering systems). One of the great debates was the format of negative numbers, with some of the era's top experts expressing very strong and differing opinions. One camp supported two's complement, the system that is dominant today. Another camp supported ones' complement, where a negative value is formed by inverting all of the bits in its positive equivalent. A third group supported sign–magnitude, where a value is changed from positive to negative simply by toggling the word's highest-order bit.
There were arguments for and against each of the systems. Sign–magnitude allowed for easier tracing of memory dumps (a common process in the 1960s) as small numeric values use fewer 1 bits. These systems did ones' complement math internally, so numbers would have to be converted to ones' complement values when they were transmitted from a register to the math unit and then converted back to sign–magnitude when the result was transmitted back to the register.

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related publications

Loading

Related people

Loading

Related units

Loading

Related concepts

Loading

Related courses

Loading

Related lectures

Loading

Related MOOCs

Loading

Related publications

Related people (1)

Related units

Related concepts (25)

Related courses (7)

Related lectures (58)

Related MOOCs

No results

In computing, signed number representations are required to encode negative numbers in binary number systems. In mathematics, negative numbers in any base are represented by prefixing them with a minus sign ("−"). However, in RAM or CPU registers, numbers are represented only as sequences of bits, without extra symbols. The four best-known methods of extending the binary numeral system to represent signed numbers are: sign–magnitude, ones' complement, two's complement, and offset binary.

Single-precision floating-point format (sometimes called FP32 or float32) is a computer number format, usually occupying 32 bits in computer memory; it represents a wide dynamic range of numeric values by using a floating radix point. A floating-point variable can represent a wider range of numbers than a fixed-point variable of the same bit width at the cost of precision. A signed 32-bit integer variable has a maximum value of 231 − 1 = 2,147,483,647, whereas an IEEE 754 32-bit base-2 floating-point variable has a maximum value of (2 − 2−23) × 2127 ≈ 3.

In mathematics, the sign of a real number is its property of being either positive, negative, or zero. Depending on local conventions, zero may be considered as being neither positive nor negative (having no sign or a unique third sign), or it may be considered both positive and negative (having both signs). Whenever not specifically mentioned, this article adheres to the first convention. In some contexts, it makes sense to consider a signed zero (such as floating-point representations of real numbers within computers).

Computer Arithmetic (Integers)

Covers binary representation, two's complement, overflow detection, and operations in MIPS for computer arithmetic with integers.

Computer Arithmetic: Floating Point Operations

Covers the basics of computer arithmetic, focusing on floating point numbers and their operations.

Arrays in C: Basics and Memory Management

Covers the basics of arrays in C, bitwise operations, file handling, and memory management.

CS-173: Digital system design

The goal is to familiarize the students with the hardware components of computing systems, and to teach the modern methods of analysis and synthesis of combinational and sequential systems, with the a

CS-101: Advanced information, computation, communication I

Discrete mathematics is a discipline with applications to almost all areas of study. It provides a set of indispensable tools to computer science in particular. This course reviews (familiar) topics a

CS-208: Computer architecture I

The course introduces the students to the basic notions
of computer architecture and, in particular, to the
choices of the Instruction Set Architecture and to the
memory hierarchy of modern systems.

No results

No results