**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of GraphSearch.

Concept# Kirchhoff's circuit laws

Summary

Kirchhoff's circuit laws are two equalities that deal with the current and potential difference (commonly known as voltage) in the lumped element model of electrical circuits. They were first described in 1845 by German physicist Gustav Kirchhoff. This generalized the work of Georg Ohm and preceded the work of James Clerk Maxwell. Widely used in electrical engineering, they are also called Kirchhoff's rules or simply Kirchhoff's laws. These laws can be applied in time and frequency domains and form the basis for network analysis.
Both of Kirchhoff's laws can be understood as corollaries of Maxwell's equations in the low-frequency limit. They are accurate for DC circuits, and for AC circuits at frequencies where the wavelengths of electromagnetic radiation are very large compared to the circuits.
This law, also called Kirchhoff's first law, or Kirchhoff's junction rule, states that, for any node (junction) in an electrical circuit, the sum of currents flowing into that node is equal to the sum of currents flowing out of that node; or equivalently:
The algebraic sum of currents in a network of conductors meeting at a point is zero.
Recalling that current is a signed (positive or negative) quantity reflecting direction towards or away from a node, this principle can be succinctly stated as: where n is the total number of branches with currents flowing towards or away from the node.
Kirchhoff's circuit laws were originally obtained from experimental results. However, the current law can be viewed as an extension of the conservation of charge, since charge is the product of current and the time the current has been flowing. If the net charge in a region is constant, the current law will hold on the boundaries of the region. This means that the current law relies on the fact that the net charge in the wires and components is constant.
A matrix version of Kirchhoff's current law is the basis of most circuit simulation software, such as SPICE. The current law is used with Ohm's law to perform nodal analysis.

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related concepts (16)

Related people (32)

Related courses (26)

Related publications (135)

Related units (13)

Capacitor

A capacitor is a device that stores electrical energy in an electric field by accumulating electric charges on two closely spaced surfaces that are insulated from each other. It is a passive electronic component with two terminals. The effect of a capacitor is known as capacitance. While some capacitance exists between any two electrical conductors in proximity in a circuit, a capacitor is a component designed to add capacitance to a circuit.

Network analysis (electrical circuits)

In electrical engineering and electronics, a network is a collection of interconnected components. Network analysis is the process of finding the voltages across, and the currents through, all network components. There are many techniques for calculating these values; however, for the most part, the techniques assume linear components. Except where stated, the methods described in this article are applicable only to linear network analysis.

Lumped-element model

The lumped-element model (also called lumped-parameter model, or lumped-component model) is a simplified representation of a physical system or circuit that assumes all components are concentrated at a single point and their behavior can be described by idealized mathematical models. The lumped-element model simplifies the system or circuit behavior description into a topology. It is useful in electrical systems (including electronics), mechanical multibody systems, heat transfer, acoustics, etc.

, , , , , , , , ,

The topics covered by the course are concepts of fluid mechanics, waves, and electromagnetism.

Le but de ce cours est d'apporter les connaissances et les expériences fondamentales pour comprendre les systèmes électriques et électroniques de base.

Le cours aborde les bases des circuits électriques composés d'éléments linéaires, en régime continu. Une série de méthodes de transformations sera traitée.
Le régime alternatif est traité en fin de se

Related lectures (145)

Short-Circuit Currents CalculationEE-370: Electric power systems

Covers the calculation of short-circuit currents in electrical networks and the equivalent models of components.

Electric Circuits: Analysis and ApplicationsEE-100: Electrical engineering science & technology

Covers the analysis and applications of electric circuits, focusing on Kirchhoff's laws and circuit theorems.

Kirchhoff's Laws: Circuits Analysis

Covers Kirchhoff's laws for circuit analysis, emphasizing conservation of charge and energy.

Inductive circuits and devices are ubiquitous and important design elements in many applications, such as magnetic drives, galvanometers, magnetic scanners, applying direct current (DC) magnetic fields to systems, radio frequency coils in nuclear magnetic ...

Mario Paolone, Rahul Kumar Gupta

Increasing adoption of smart meters and phasor measurement units (PMUs) in power distribution networks are enabling the adoption of data-driven/model-less control schemes to mitigate grid issues such as over/under voltages and power-flow congestions. Howev ...

Christophe Ballif, Luca Massimiliano Antognini, Samira Alexandra Frey, Mohammad Beygi

Microchannel plates fabricated from hydrogenated amorphous silicon (AMCPs) are a promising alternative to conventional glass microchannel plates. Their main advantages lie in their flexible fabrication processes, allowing for adaptable channel shapes and t ...

2023