Thom spaceIn mathematics, the Thom space, Thom complex, or Pontryagin–Thom construction (named after René Thom and Lev Pontryagin) of algebraic topology and differential topology is a topological space associated to a vector bundle, over any paracompact space. One way to construct this space is as follows. Let be a rank n real vector bundle over the paracompact space B. Then for each point b in B, the fiber is an -dimensional real vector space. Choose an orthogonal structure on E, a smoothly varying inner product on the fibers; we can do this using partitions of unity.
Normal invariantIn mathematics, a normal map is a concept in geometric topology due to William Browder which is of fundamental importance in surgery theory. Given a Poincaré complex X (more geometrically a Poincaré space), a normal map on X endows the space, roughly speaking, with some of the homotopy-theoretic global structure of a closed manifold. In particular, X has a good candidate for a stable normal bundle and a Thom collapse map, which is equivalent to there being a map from a manifold M to X matching the fundamental classes and preserving normal bundle information.
Piecewise linear manifoldIn mathematics, a piecewise linear (PL) manifold is a topological manifold together with a piecewise linear structure on it. Such a structure can be defined by means of an atlas, such that one can pass from chart to chart in it by piecewise linear functions. This is slightly stronger than the topological notion of a triangulation. An isomorphism of PL manifolds is called a PL homeomorphism.
Obstruction theoryIn mathematics, obstruction theory is a name given to two different mathematical theories, both of which yield cohomological invariants. In the original work of Stiefel and Whitney, characteristic classes were defined as obstructions to the existence of certain fields of linear independent vectors. Obstruction theory turns out to be an application of cohomology theory to the problem of constructing a cross-section of a bundle.
Normal bundleIn differential geometry, a field of mathematics, a normal bundle is a particular kind of vector bundle, complementary to the tangent bundle, and coming from an embedding (or immersion). Let be a Riemannian manifold, and a Riemannian submanifold. Define, for a given , a vector to be normal to whenever for all (so that is orthogonal to ). The set of all such is then called the normal space to at .
C. T. C. WallCharles Terence Clegg "Terry" Wall (born 14 December 1936) is a British mathematician, educated at Marlborough and Trinity College, Cambridge. He is an emeritus professor of the University of Liverpool, where he was first appointed professor in 1965. From 1978 to 1980 he was the president of the London Mathematical Society. His early work was in cobordism theory in algebraic topology; this includes his 1959 Cambridge PhD thesis entitled "Algebraic aspects of cobordism", written under the direction of Frank Adams and Christopher Zeeman.
CobordismIn mathematics, cobordism is a fundamental equivalence relation on the class of compact manifolds of the same dimension, set up using the concept of the boundary (French bord, giving cobordism) of a manifold. Two manifolds of the same dimension are cobordant if their disjoint union is the boundary of a compact manifold one dimension higher. The boundary of an (n + 1)-dimensional manifold W is an n-dimensional manifold ∂W that is closed, i.e., with empty boundary.
Poincaré dualityIn mathematics, the Poincaré duality theorem, named after Henri Poincaré, is a basic result on the structure of the homology and cohomology groups of manifolds. It states that if M is an n-dimensional oriented closed manifold (compact and without boundary), then the kth cohomology group of M is isomorphic to the ()th homology group of M, for all integers k Poincaré duality holds for any coefficient ring, so long as one has taken an orientation with respect to that coefficient ring; in particular, since every manifold has a unique orientation mod 2, Poincaré duality holds mod 2 without any assumption of orientation.
H-cobordismIn geometric topology and differential topology, an (n + 1)-dimensional cobordism W between n-dimensional manifolds M and N is an h-cobordism (the h stands for homotopy equivalence) if the inclusion maps are homotopy equivalences. The h-cobordism theorem gives sufficient conditions for an h-cobordism to be trivial, i.e., to be C-isomorphic to the cylinder M × [0, 1]. Here C refers to any of the categories of smooth, piecewise linear, or topological manifolds.
Whitehead torsionIn geometric topology, a field within mathematics, the obstruction to a homotopy equivalence of finite CW-complexes being a simple homotopy equivalence is its Whitehead torsion which is an element in the Whitehead group . These concepts are named after the mathematician J. H. C. Whitehead. The Whitehead torsion is important in applying surgery theory to non-simply connected manifolds of dimension > 4: for simply-connected manifolds, the Whitehead group vanishes, and thus homotopy equivalences and simple homotopy equivalences are the same.