In mathematics, a class formation is a topological group acting on a module satisfying certain conditions. Class formations were introduced by Emil Artin and John Tate to organize the various Galois groups and modules that appear in class field theory. A formation is a topological group G together with a topological G-module A on which G acts continuously. A layer E/F of a formation is a pair of open subgroups E, F of G such that F is a finite index subgroup of E. It is called a normal layer if F is a normal subgroup of E, and a cyclic layer if in addition the quotient group is cyclic. If E is a subgroup of G, then AE is defined to be the elements of A fixed by E. We write Hn(E/F) for the Tate cohomology group Hn(E/F, AF) whenever E/F is a normal layer. (Some authors think of E and F as fixed fields rather than subgroup of G, so write F/E instead of E/F.) In applications, G is often the absolute Galois group of a field, and in particular is profinite, and the open subgroups therefore correspond to the finite extensions of the field contained in some fixed separable closure. A class formation is a formation such that for every normal layer E/F H1(E/F) is trivial, and H2(E/F) is cyclic of order |E/F|. In practice, these cyclic groups come provided with canonical generators uE/F ∈ H2(E/F), called fundamental classes, that are compatible with each other in the sense that the restriction (of cohomology classes) of a fundamental class is another fundamental class. Often the fundamental classes are considered to be part of the structure of a class formation. A formation that satisfies just the condition H1(E/F)=1 is sometimes called a field formation. For example, if G is any finite group acting on a field L and A=L×, then this is a field formation by Hilbert's theorem 90. The most important examples of class formations (arranged roughly in order of difficulty) are as follows: Archimedean local class field theory: The module A is the group of non-zero complex numbers, and G is either trivial or is the cyclic group of order 2 generated by complex conjugation.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.