Summary
Mosaicism or genetic mosaicism is a condition in which a multicellular organism possesses more than one genetic line as the result of genetic mutation. This means that various genetic lines resulted from a single fertilized egg. Mosaicism is one of several possible causes of chimerism, wherein a single organism is composed of cells with more than one distinct genotype. Genetic mosaicism can result from many different mechanisms including chromosome nondisjunction, anaphase lag, and endoreplication. Anaphase lagging is the most common way by which mosaicism arises in the preimplantation embryo. Mosaicism can also result from a mutation in one cell during development, in which case the mutation will be passed on only to its daughter cells (and will be present only in certain adult cells). Somatic mosaicism is not generally inheritable as it does not generally affect germ cells. In 1929, Alfred Sturtevant studied mosaicism in Drosophila, a genus of fruit fly. Muller in 1930 demonstrated that mosaicism in Drosophila is always associated with chromosomal rearrangements and Schultz in 1936 showed that in all cases studied these rearrangements were associated with heterochromatic inert regions, several hypotheses on the nature of such mosaicism were proposed. One hypothesis assumed that mosaicism appears as the result of a break and loss of chromosome segments. Curt Stern in 1935 assumed that the structural changes in the chromosomes took place as a result of somatic crossing, as a result of which mutations or small chromosomal rearrangements in somatic cells. Thus the inert region causes an increase in mutation frequency or small chromosomal rearrangements in active segments adjacent to inert regions. In the 1930s, Stern demonstrated that genetic recombination, normal in meiosis, can also take place in mitosis. When it does, it results in somatic (body) mosaics. These organisms contain two or more genetically distinct types of tissue. The term somatic mosaicism was used by CW Cotterman in 1956 in his seminal paper on antigenic variation.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Ontological neighbourhood
Related courses (5)
MATH-506: Topology IV.b - cohomology rings
Singular cohomology is defined by dualizing the singular chain complex for spaces. We will study its basic properties, see how it acquires a multiplicative structure and becomes a graded commutative a
MATH-476: Optimal transport
The first part is devoted to Monge and Kantorovitch problems, discussing the existence and the properties of the optimal plan. The second part introduces the Wasserstein distance on measures and devel
BIO-105: Cellular biology and biochemistry for engineers
Basic course in biochemistry as well as cellular and molecular biology for non-life science students enrolling at the Master or PhD thesis level from various engineering disciplines. It reviews essent
Show more
Related lectures (32)
The Topological Künneth Theorem
Explores the topological Künneth Theorem, emphasizing commutativity and homotopy equivalence in chain complexes.
Cross Product in Cohomology
Explores the cross product in cohomology, covering its properties and applications in homotopy.
Chromosome 7: Trisomy Correction Mechanisms
Explores trisomy correction mechanisms, mosaicism, and genetic disorder diagnosis challenges.
Show more
Related publications (25)

Centromere structure and function: lessons from Drosophila

Eftychia Kyriacou

The fruit fly Drosophila melanogaster serves as a powerful model organism for advancing our understanding of biological processes, not just by studying its similarities with other organisms including ourselves but also by investigating its differences to u ...
Bethesda2023
Show more
Related concepts (15)
Klinefelter syndrome
Klinefelter syndrome (KS), also known as 47,XXY, is an aneuploid genetic condition where a male has an additional copy of the X chromosome. The primary features are infertility and small, poorly functioning testicles. Usually, symptoms are subtle and subjects do not realize they are affected. Sometimes, symptoms are more evident and may include weaker muscles, greater height, poor motor coordination, less body hair, breast growth, and less interest in sex. Often, these symptoms are noticed only at puberty.
DNA methylation
DNA methylation is a biological process by which methyl groups are added to the DNA molecule. Methylation can change the activity of a DNA segment without changing the sequence. When located in a gene promoter, DNA methylation typically acts to repress gene transcription. In mammals, DNA methylation is essential for normal development and is associated with a number of key processes including genomic imprinting, X-chromosome inactivation, repression of transposable elements, aging, and carcinogenesis.
X-inactivation
X-inactivation (also called Lyonization, after English geneticist Mary Lyon) is a process by which one of the copies of the X chromosome is inactivated in therian female mammals. The inactive X chromosome is silenced by being packaged into a transcriptionally inactive structure called heterochromatin. As nearly all female mammals have two X chromosomes, X-inactivation prevents them from having twice as many X chromosome gene products as males, who only possess a single copy of the X chromosome (see dosage compensation).
Show more