Un anneau commutatif est un anneau dans lequel la loi de multiplication est commutative.
L’étude des anneaux commutatifs s’appelle l’algèbre commutative.
Un anneau commutatif est un anneau (unitaire) dans lequel la loi de multiplication est commutative.
Dans la mesure où les anneaux commutatifs sont des anneaux particuliers, nombre de concepts de théorie générale des anneaux conservent toute leur pertinence et leur utilité en théorie des anneaux commutatifs : ainsi ceux de morphismes d'anneaux, d'idéaux et d'anneaux quotients, de sous-anneaux, d'éléments nilpotents. Il est simplement inutile de distinguer idéaux à gauche et à droite : les idéaux sont systématiquement bilatères et permettent la définition de quotients.
L’ensemble des entiers relatifs muni des lois d’addition et de multiplication ordinaires est l'archétype des anneaux commutatifs. L’anneau est généralement noté en référence au mot allemand « Zahlen » (nombres).
Les nombres rationnels, les nombres réels et les nombres complexes forment des anneaux commutatifs. Ce sont tous des corps commutatifs, c'est-à-dire des anneaux commutatifs où la division est possible.
Si n est un entier strictement positif, alors l’ensemble Z/nZ des classes de congruence modulo n est un anneau commutatif à n éléments.
Si A est un anneau commutatif, alors les polynômes à une indéterminée (ou plus généralement les polynômes à plusieurs indéterminées), à coefficients dans A constituent un nouvel anneau commutatif, noté A[X] (respectivement A[X1,...,Xn]).
Il en est de même des séries formelles à coefficients dans A, dont l'anneau est noté (respectivement ).
Les anneaux de Boole sont des anneaux commutatifs de caractéristique 2, intimement liés aux algèbres de Boole.
Les fonctions continues de [0, 1] vers R constituent, pour l'addition et la multiplication usuelle, un anneau commutatif (non intègre).
Anneau intègre
Un élément non nul a d’un anneau commutatif est appelé un diviseur de zéro, lorsqu’il existe un élément non nul b de l’anneau tel que ab = 0.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
En mathématiques, dans la formalisation du langage des catégories, la limite projective est une généralisation du produit. Cette notion est duale de celle de limite inductive. Soient un ensemble ordonné, une famille d'ensembles indexée par , et pour chaque couple tel que , une application . On suppose que ces applications vérifient les deux propriétés suivantes : Une telle structure est appelée système projectif d'ensembles.
vignette|Schéma heuristique des structures algébriques. Les anneaux principaux forment un type d'anneaux commutatifs important dans la théorie mathématique de la divisibilité (voir aussi l'article anneau principal non commutatif). Ce sont des anneaux intègres auxquels on peut étendre deux théorèmes qui, au sens strict, concernent l'anneau des entiers relatifs : le théorème de Bachet-Bézout et le théorème fondamental de l'arithmétique. Un anneau A est dit commutatif lorsque, pour tous éléments a et b de A, .
En mathématiques, le spectre premier d'un anneau commutatif unitaire A désigne l'ensemble des idéaux premiers de A. Cet ensemble est muni d'une topologie (de Zariski) et d'un faisceau d'anneaux commutatifs unitaires qui en font un espace topologique annelé en anneaux locaux. Cet espace est alors appelé un schéma affine et il sert d'espace de base pour la construction des schémas en géométrie algébrique. Le spectre d'un anneau commutatif A est l'ensemble de ses idéaux premiers. On le note Spec A.
Algebraic number theory is the study of the properties of solutions of polynomial equations with integral coefficients; Starting with concrete problems, we then introduce more general notions like alg
Galois theory aims at describing the algebraic symmetries of fields. After reviewing the basic material (from the 2nd year course "Ring and Fields") and in particular the Galois correspondence, we wi
We establish the Minimal Model Program for arithmetic threefolds whose residue characteristics are greater than five. In doing this, we generalize the theory of global F-regularity to mixed characteristic and identify certain stable sections of adjoint lin ...
A correspondence functor is a functor from the category of finite sets and correspondences to the category of k-modules, where k is a commutative ring. By means of a suitably defined duality, new correspondence functors are constructed, having remarkable p ...
Let h be a connective homology theory. We construct a functorial relative plus construction as a Bousfield localization functor in the category of maps of spaces. It allows us to associate to a pair (X,H), consisting of a connected space X and an hperfect ...