Seismic moment is a quantity used by seismologists to measure the size of an earthquake. The scalar seismic moment is defined by the equation
where
is the shear modulus of the rocks involved in the earthquake (in pascals (Pa), i.e. newtons per square meter)
is the area of the rupture along the geologic fault where the earthquake occurred (in square meters), and
is the average slip (displacement offset between the two sides of the fault) on (in meters).
thus has dimensions of torque, measured in newton meters. The connection between seismic moment and a torque is natural in the body-force equivalent representation of seismic sources as a double-couple (a pair of force couples with opposite torques): the seismic moment is the torque of each of the two couples. Despite having the same dimensions as energy, seismic moment is not a measure of energy. The relations between seismic moment, potential energy drop and radiated energy are indirect and approximative.
The seismic moment of an earthquake is typically estimated using whatever information is available to constrain its factors. For modern earthquakes, moment is usually estimated from ground motion recordings of earthquakes known as seismograms. For earthquakes that occurred in times before modern instruments were available, moment may be estimated from geologic estimates of the size of the fault rupture and the slip.
Seismic moment is the basis of the moment magnitude scale introduced by Hiroo Kanamori, which is often used to compare the size of different earthquakes and is especially useful for comparing the sizes of large (great) earthquakes.
The seismic moment is not restricted to earthquakes.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Fundamentals of fracture and friction. Numerical methods for models of earthquakes and aseismic slip. Geophysical observations/measurements. Aseismic slip and slow slip events: models and observations
This course presents the classical and new approaches required to study the source mechanisms of earthquakes, combining theory and observations in a unified methodology, with a key focus on the mechan
This course deals with the main aspects of seismic design and assessment of buildings including conceptual design. It covers different structural design and evaluation philosophies for new and existin
An earthquake (also known as a quake, tremor or temblor) is the shaking of the surface of the Earth resulting from a sudden release of energy in the Earth's lithosphere that creates seismic waves. Earthquakes can range in intensity, from those that are so weak that they cannot be felt, to those violent enough to propel objects and people into the air, damage critical infrastructure, and wreak destruction across entire cities. The seismic activity of an area is the frequency, type, and size of earthquakes experienced over a particular time.
Earthquakes are natural phenomena that cause ground shaking and damage to people and infrastructures. Despite significant progress achieved in understanding how earthquakes start, propagate, and arrest, many aspects of their physics and mechanics remain no ...
EPFL2023
, , ,
Earthquakes i.e. frictional ruptures, are commonly described by singular solutions of shear crack motions. These solutions assume a square root singularity order around the rupture tip and a constant shear stress value behind it, implying scale-independent ...
Surface roughness ubiquitously prevails in natural faults across various length scales. Despite extensive studies highlighting the important role of fault geometry in the dynamics of tectonic earthquakes, whether and how fault roughness affects fluid-induc ...