**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of GraphSearch.

Concept# Hadamard transform

Summary

The Hadamard transform (also known as the Walsh–Hadamard transform, Hadamard–Rademacher–Walsh transform, Walsh transform, or Walsh–Fourier transform) is an example of a generalized class of Fourier transforms. It performs an orthogonal, symmetric, involutive, linear operation on 2m real numbers (or complex, or hypercomplex numbers, although the Hadamard matrices themselves are purely real).
The Hadamard transform can be regarded as being built out of size-2 discrete Fourier transforms (DFTs), and is in fact equivalent to a multidimensional DFT of size 2 × 2 × ⋯ × 2 × 2. It decomposes an arbitrary input vector into a superposition of Walsh functions.
The transform is named for the French mathematician Jacques Hadamard (adamaʁ), the German-American mathematician Hans Rademacher, and the American mathematician Joseph L. Walsh.
The Hadamard transform Hm is a 2m × 2m matrix, the Hadamard matrix (scaled by a normalization factor), that transforms 2m real numbers xn into 2m real numbers Xk. The Hadamard transform can be defined in two ways: recursively, or by using the binary (base-2) representation of the indices n and k.
Recursively, we define the 1 × 1 Hadamard transform H0 by the identity H0 = 1, and then define Hm for m > 0 by:
where the 1/ is a normalization that is sometimes omitted.
For m > 1, we can also define Hm by:
where represents the Kronecker product. Thus, other than this normalization factor, the Hadamard matrices are made up entirely of 1 and −1.
Equivalently, we can define the Hadamard matrix by its (k, n)-th entry by writing
where the kj and nj are the bit elements (0 or 1) of k and n, respectively. Note that for the element in the top left corner, we define: . In this case, we have:
This is exactly the multidimensional DFT, normalized to be unitary, if the inputs and outputs are regarded as multidimensional arrays indexed by the nj and kj, respectively.
Some examples of the Hadamard matrices follow.
where is the bitwise dot product of the binary representations of the numbers i and j.

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related publications (1)

Related people (3)

Related concepts (16)

Related courses (7)

MATH-644: Quantum Algorithms

The course is given by Prof. Johannes Buchmann and covers fundamental quantum algorithms and the theory behind them. It is rigorous from a mathematics, physics, and computer science perspective and re

PHYS-641: Quantum Computing

After introducing the foundations of classical and quantum information theory, and quantum measurement, the course will address the theory and practice of digital quantum computing, covering fundament

ENG-606(a): Design of experiments (a) - Fall semester

The course teaches the acquisition of a methodology of designing experiments for optimal quality of the results and of the number of experiments.

Related lectures (63)

Quantum Delegation Protocols

Covers classical single qubit Hamiltonian verification and quantum delegation protocols.

Shor Algorithm: Quantum FactorizationCS-308: Quantum computation

Covers the Shor algorithm for quantum factorization and the general formula for arithmetic periods.

Shor's Factoring AlgorithmPHYS-641: Quantum Computing

Covers Shor's factoring algorithm, which efficiently factors large numbers using quantum computers.

Quantum logic gate

In quantum computing and specifically the quantum circuit model of computation, a quantum logic gate (or simply quantum gate) is a basic quantum circuit operating on a small number of qubits. They are the building blocks of quantum circuits, like classical logic gates are for conventional digital circuits. Unlike many classical logic gates, quantum logic gates are reversible. It is possible to perform classical computing using only reversible gates.

Hadamard matrix

In mathematics, a Hadamard matrix, named after the French mathematician Jacques Hadamard, is a square matrix whose entries are either +1 or −1 and whose rows are mutually orthogonal. In geometric terms, this means that each pair of rows in a Hadamard matrix represents two perpendicular vectors, while in combinatorial terms, it means that each pair of rows has matching entries in exactly half of their columns and mismatched entries in the remaining columns.

Hadamard transform

The Hadamard transform (also known as the Walsh–Hadamard transform, Hadamard–Rademacher–Walsh transform, Walsh transform, or Walsh–Fourier transform) is an example of a generalized class of Fourier transforms. It performs an orthogonal, symmetric, involutive, linear operation on 2m real numbers (or complex, or hypercomplex numbers, although the Hadamard matrices themselves are purely real). The Hadamard transform can be regarded as being built out of size-2 discrete Fourier transforms (DFTs), and is in fact equivalent to a multidimensional DFT of size 2 × 2 × ⋯ × 2 × 2.

The prototypical signal processing pipeline can be divided into four blocks. Representation of the signal in a basis suitable for processing. Enhancement of the meaningful part of the signal and noise