In mathematics, physics, and art, moiré patterns (UK'mwɑːɹeɪ , USmwɑːˈɹeɪ , mwaʁe) or moiré fringes are large-scale interference patterns that can be produced when a partially opaque ruled pattern with transparent gaps is overlaid on another similar pattern. For the moiré interference pattern to appear, the two patterns must not be completely identical, but rather displaced, rotated, or have slightly different pitch. Moiré patterns appear in many situations. In printing, the printed pattern of dots can interfere with the image. In television and digital photography, a pattern on an object being photographed can interfere with the shape of the light sensors to generate unwanted artifacts. They are also sometimes created deliberately – in micrometers they are used to amplify the effects of very small movements. In physics, its manifestation is wave interference such as that seen in the double-slit experiment and the beat phenomenon in acoustics. The term originates from moire (moiré in its French adjectival form), a type of textile, traditionally made of silk but now also made of cotton or synthetic fiber, with a rippled or "watered" appearance. Moire, or "watered textile", is made by pressing two layers of the textile when wet. The similar but imperfect spacing of the threads creates a characteristic pattern which remains after the fabric dries. In French, the noun moire is in use from the 17th century, for "watered silk". It was a loan of the English mohair (attested 1610). In French usage, the noun gave rise to the verb moirer, "to produce a watered textile by weaving or pressing", by the 18th century. The adjective moiré formed from this verb is in use from at least 1823. Moiré patterns are often an artifact of produced by various digital imaging and computer graphics techniques, for example when a halftone picture or ray tracing a checkered plane (the latter being a special case of aliasing, due to undersampling a fine regular pattern). This can be overcome in texture mapping through the use of mipmapping and anisotropic filtering.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (1)
PHYS-756: Lectures on twisted bilayer graphene
Twisted Bilayer Graphene (TBG) is a change of paradigm in condensed matter: with flat topologic bands, it provides a platform for unconventional superconductivity, correlated insulation, Plankian meta
Related concepts (4)
Computer graphics
Computer graphics deals with generating s and art with the aid of computers. Today, computer graphics is a core technology in digital photography, film, video games, digital art, cell phone and computer displays, and many specialized applications. A great deal of specialized hardware and software has been developed, with the displays of most devices being driven by computer graphics hardware. It is a vast and recently developed area of computer science. The phrase was coined in 1960 by computer graphics researchers Verne Hudson and William Fetter of Boeing.
Aliasing
In signal processing and related disciplines, aliasing is the overlapping of frequency components resulting from a sample rate below the Nyquist frequency. This overlap results in distortion or artifacts when the signal is reconstructed from samples which causes the reconstructed signal to differ from the original continuous signal. Aliasing that occurs in signals sampled in time, for instance in digital audio or the stroboscopic effect, is referred to as temporal aliasing. Aliasing in spatially sampled signals (e.
Sampling (signal processing)
In signal processing, sampling is the reduction of a continuous-time signal to a discrete-time signal. A common example is the conversion of a sound wave to a sequence of "samples". A sample is a value of the signal at a point in time and/or space; this definition differs from the term's usage in statistics, which refers to a set of such values. A sampler is a subsystem or operation that extracts samples from a continuous signal. A theoretical ideal sampler produces samples equivalent to the instantaneous value of the continuous signal at the desired points.
Show more
Related MOOCs (3)
Micro and Nanofabrication (MEMS)
Learn the fundamentals of microfabrication and nanofabrication by using the most effective techniques in a cleanroom environment.
Microstructure Fabrication Technologies I
Learn the fundamentals of microfabrication and nanofabrication by using the most effective techniques in a cleanroom environment.
Micro and Nanofabrication (MEMS)
Learn the fundamentals of microfabrication and nanofabrication by using the most effective techniques in a cleanroom environment.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.