In theoretical physics, a Penrose diagram (named after mathematical physicist Roger Penrose) is a two-dimensional diagram capturing the causal relations between different points in spacetime through a conformal treatment of infinity. It is an extension (suitable for the curved spacetimes of e.g. general relativity) of the Minkowski diagram of special relativity where the vertical dimension represents time, and the horizontal dimension represents a space dimension. Using this design, all light rays take a 45° path.. Locally, the metric on a Penrose diagram is conformally equivalent to the metric of the spacetime depicted. The conformal factor is chosen such that the entire infinite spacetime is transformed into a Penrose diagram of finite size, with infinity on the boundary of the diagram. For spherically symmetric spacetimes, every point in the Penrose diagram corresponds to a 2-dimensional sphere .
While Penrose diagrams share the same basic coordinate vector system of other spacetime diagrams for local asymptotically flat spacetime, it introduces a system of representing distant spacetime by shrinking or "crunching" distances that are further away. Straight lines of constant time and straight lines of constant space coordinates therefore become hyperbolae, which appear to converge at points in the corners of the diagram. These points and boundaries represent conformal infinity for spacetime, which was first introduced by Penrose in 1963.
Penrose diagrams are more properly (but less frequently) called Penrose–Carter diagrams (or Carter–Penrose diagrams), acknowledging both Brandon Carter and Roger Penrose, who were the first researchers to employ them. They are also called conformal diagrams, or simply spacetime diagrams (although the latter may refer to Minkowski diagrams).
Two lines drawn at 45° angles should intersect in the diagram only if the corresponding two light rays intersect in the actual spacetime. So, a Penrose diagram can be used as a concise illustration of spacetime regions that are accessible to observation.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
In mathematical physics, the causal structure of a Lorentzian manifold describes the causal relationships between points in the manifold. In modern physics (especially general relativity) spacetime is represented by a Lorentzian manifold. The causal relations between points in the manifold are interpreted as describing which events in spacetime can influence which other events. The causal structure of an arbitrary (possibly curved) Lorentzian manifold is made more complicated by the presence of curvature.
The black hole information paradox is a puzzle that appears when the predictions of quantum mechanics and general relativity are combined. The theory of general relativity predicts the existence of black holes that are regions of spacetime from which nothing — not even light — can escape. In the 1970s, Stephen Hawking applied the semi-classical approach of quantum field theory in curved spacetime to such systems and found that an isolated black hole would emit a form of radiation called Hawking radiation.
The weak and the strong cosmic censorship hypotheses are two mathematical conjectures about the structure of gravitational singularities arising in general relativity. Singularities that arise in the solutions of Einstein's equations are typically hidden within event horizons, and therefore cannot be observed from the rest of spacetime. Singularities that are not so hidden are called naked. The weak cosmic censorship hypothesis was conceived by Roger Penrose in 1969 and posits that no naked singularities exist in the universe.
For the plane symmetry we have found the electro-vacuum exact solutions of the Einstein-Maxwell equations and we have shown that one of them is equivalent to the McVittie solution of a charged infinite thin plane. The analytical extension has been accompli ...
Classical soft graviton theorem gives the gravitational wave-form at future null infinity at late retarded time u for a general classical scattering. The large u expansion has three known universal terms: the constant term, the term proportional to 1/u and ...
SPRINGER2022
In failure-time settings, a competing event is any event that makes it impossible for the event of interest to occur. For example, cardiovascular disease death is a competing event for prostate cancer death because an individual cannot die of prostate canc ...