In information theory, the Shannon–Hartley theorem tells the maximum rate at which information can be transmitted over a communications channel of a specified bandwidth in the presence of noise. It is an application of the noisy-channel coding theorem to the archetypal case of a continuous-time analog communications channel subject to Gaussian noise. The theorem establishes Shannon's channel capacity for such a communication link, a bound on the maximum amount of error-free information per time unit that can be transmitted with a specified bandwidth in the presence of the noise interference, assuming that the signal power is bounded, and that the Gaussian noise process is characterized by a known power or power spectral density. The law is named after Claude Shannon and Ralph Hartley.
The Shannon–Hartley theorem states the channel capacity , meaning the theoretical tightest upper bound on the information rate of data that can be communicated at an arbitrarily low error rate using an average received signal power through an analog communication channel subject to additive white Gaussian noise (AWGN) of power :
where
is the channel capacity in bits per second, a theoretical upper bound on the net bit rate (information rate, sometimes denoted ) excluding error-correction codes;
is the bandwidth of the channel in hertz (passband bandwidth in case of a bandpass signal);
is the average received signal power over the bandwidth (in case of a carrier-modulated passband transmission, often denoted C), measured in watts (or volts squared);
is the average power of the noise and interference over the bandwidth, measured in watts (or volts squared); and
is the signal-to-noise ratio (SNR) or the carrier-to-noise ratio (CNR) of the communication signal to the noise and interference at the receiver (expressed as a linear power ratio, not as logarithmic decibels).
During the late 1920s, Harry Nyquist and Ralph Hartley developed a handful of fundamental ideas related to the transmission of information, particularly in the context of the telegraph as a communications system.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Students extend their knowledge on wireless communication systems to spread-spectrum communication and to multi-antenna systems. They also learn about the basic information theoretic concepts, about c
In a digitally modulated signal or a line code, symbol rate, modulation rate or baud rate is the number of symbol changes, waveform changes, or signaling events across the transmission medium per unit of time. The symbol rate is measured in baud (Bd) or symbols per second. In the case of a line code, the symbol rate is the pulse rate in pulses per second. Each symbol can represent or convey one or several bits of data. The symbol rate is related to the gross bit rate, expressed in bits per second.
In telecommunications and computing, bit rate (bitrate or as a variable R) is the number of bits that are conveyed or processed per unit of time. The bit rate is expressed in the unit bit per second (symbol: bit/s), often in conjunction with an SI prefix such as kilo (1 kbit/s = 1,000 bit/s), mega (1 Mbit/s = 1,000 kbit/s), giga (1 Gbit/s = 1,000 Mbit/s) or tera (1 Tbit/s = 1,000 Gbit/s). The non-standard abbreviation bps is often used to replace the standard symbol bit/s, so that, for example, 1 Mbps is used to mean one million bits per second.
Spectral efficiency, spectrum efficiency or bandwidth efficiency refers to the information rate that can be transmitted over a given bandwidth in a specific communication system. It is a measure of how efficiently a limited frequency spectrum is utilized by the physical layer protocol, and sometimes by the medium access control (the channel access protocol). The link spectral efficiency of a digital communication system is measured in bit/s/Hz, or, less frequently but unambiguously, in (bit/s)/Hz.
Commitment is a key primitive which resides at the heart of several cryptographic protocols. Noisy channels can help realize information-theoretically secure commitment schemes; however, their imprecise statistical characterization can severely impair such ...
This paper investigates the effect of combination policies on the performance of adaptive social learning in non-stationary environments. By analyzing the relation between the error probability and the underlying graph topology, we prove that in the slow a ...
We study the hitting probabilities of the solution to a system of d stochastic heat equations with additive noise subject to Dirichlet boundary conditions. We show that for any bounded Borel set with positive (d-6)\documentclass[12pt]{minimal} \usepackage{ ...