Summary
A quantum dot solar cell (QDSC) is a solar cell design that uses quantum dots as the captivating photovoltaic material. It attempts to replace bulk materials such as silicon, copper indium gallium selenide (CIGS) or cadmium telluride (CdTe). Quantum dots have bandgaps that are adjustable across a wide range of energy levels by changing their size. In bulk materials, the bandgap is fixed by the choice of material(s). This property makes quantum dots attractive for multi-junction solar cells, where a variety of materials are used to improve efficiency by harvesting multiple portions of the solar spectrum. As of 2022, efficiency exceeds 18.1%. Quantum dot solar cells have the potential to increase the maximum attainable thermodynamic conversion efficiency of solar photon conversion up to about 66% by utilizing hot photogenerated carriers to produce higher photovoltages or higher photocurrents. In a conventional solar cell, light is absorbed by a semiconductor, producing an electron-hole (e-h) pair; the pair may be bound and is referred to as an exciton. This pair is separated by an internal electrochemical potential (present in p-n junctions or Schottky diodes) and the resulting flow of electrons and holes creates an electric current. The internal electrochemical potential is created by doping one part of the semiconductor interface with atoms that act as electron donors (n-type doping) and another with electron acceptors (p-type doping) that results in a p-n junction. The generation of an e-h pair requires that the photons have energy exceeding the bandgap of the material. Effectively, photons with energies lower than the bandgap do not get absorbed, while those that are higher can quickly (within about 10−13 s) thermalize to the band edges, reducing output. The former limitation reduces current, while the thermalization reduces the voltage. As a result, semiconductor cells suffer a trade-off between voltage and current (which can be in part alleviated by using multiple junction implementations).
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (15)
PHYS-609: Modern photovoltaic technologies
A link between the fundamental physics, device operation and technological development of various solar cell technologies. Learning about all modern photovoltaic technlogies incl. industrially relevan
CH-426: Artificial photosynthesis
This class is intended to make students familiar with dye sensitized solar cells. It presents the principle of design and rationalize the influence of various components on the power conversion effici
MSE-482: Optical properties of materials
Students will study fundamental principles of light-matter interaction and apply classical and quantum mechanical models for quantitative estimates. Optical phenomena in glasses, organic/inorganic sem
Show more
Related publications (1,000)