Hit to lead (H2L) also known as lead generation is a stage in early drug discovery where small molecule hits from a high throughput screen (HTS) are evaluated and undergo limited optimization to identify promising lead compounds. These lead compounds undergo more extensive optimization in a subsequent step of drug discovery called lead optimization (LO). The drug discovery process generally follows the following path that includes a hit to lead stage:
Target validation (TV) → Assay development → High-throughput screening (HTS) → Hit to lead (H2L) → Lead optimization (LO) → Preclinical development → Clinical development
The hit to lead stage starts with confirmation and evaluation of the initial screening hits and is followed by synthesis of analogs (hit expansion). Typically the initial screening hits display binding affinities for their biological target in the micromolar (10−6 molar concentration) range. Through limited H2L optimization, the affinities of the hits are often improved by several orders of magnitude to the nanomolar (10−9 M) range. The hits also undergo limited optimization to improve metabolic half life so that the compounds can be tested in animal models of disease and also to improve selectivity against other biological targets binding that may result in undesirable side effects.
On average, only one in every 5,000 compounds that enters drug discovery to the stage of preclinical development becomes an approved drug.
After hits are identified from a high throughput screen, the hits are confirmed and evaluated using the following methods:
Confirmatory testing: compounds that were found active against the selected target are re-tested using the same assay conditions used during the HTS to make sure that the activity is reproducible.
Dose response curve: the compound is tested over a range of concentrations to determine the concentration that results in half maximal binding or activity (IC50 or EC50 value respectively).
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
The goal of this course is to instruct the student how fundamental scientific knowledge can be applied for drug discovery and development. We will demonstrate these principles with examples, including
We will cover key concepts of Medicinal Chemistry, from identification of active chemical starting points to how they are optimized to deliver drug candidates. We will use real case studies from the p
Delves into the fundamentals of medicinal chemistry, emphasizing the interrogation of Structure-Activity Relationships (SAR) in drug design.
Explores enantioselective C-H activation reactions using Cu, Rh, and Ni catalysts for functionalization of olefins, alkynes, and alkenes.
Covers the concepts and technologies of fragment-based drug discovery, exploring hit identification, lead optimization, and screening methods.
, , ,
The drive to develop cartilage implants for the treatment of major defects in the musculoskeletal sys-tem has resulted in a major research thrust towards developing biomaterial devices for cartilage repair. Investigational devices for the restoration of ar ...
Preventing the misfolding or aggregation of TDP-43 is the most actively pursued disease-modifying strategy to treat amyotrophic lateral sclerosis (ALS) and other neurodegenerative diseases. In our work, we provide proof of concept that native state stabili ...
Preventing the misfolding or aggregation of transactive response DNA binding protein with 43 kDa (TDP-43) is the most actively pursued disease-modifying strategy to treat amyotrophic lateral sclerosis and other neurodegenerative diseases. In this work, we ...
A lead compound (ˈliːd, i.e. a "leading" compound, not to be confused with various compounds of the metallic element lead) in drug discovery is a chemical compound that has pharmacological or biological activity likely to be therapeutically useful, but may nevertheless have suboptimal structure that requires modification to fit better to the target; lead drugs offer the prospect of being followed by back-up compounds. Its chemical structure serves as a starting point for chemical modifications in order to improve potency, selectivity, or pharmacokinetic parameters.
Chemogenomics, or chemical genomics, is the systematic screening of targeted chemical libraries of small molecules against individual drug target families (e.g., GPCRs, nuclear receptors, kinases, proteases, etc.) with the ultimate goal of identification of novel drugs and drug targets. Typically some members of a target library have been well characterized where both the function has been determined and compounds that modulate the function of those targets (ligands in the case of receptors, inhibitors of enzymes, or blockers of ion channels) have been identified.
High-throughput screening (HTS) is a method for scientific experimentation especially used in drug discovery and relevant to the fields of biology, materials science and chemistry. Using robotics, data processing/control software, liquid handling devices, and sensitive detectors, high-throughput screening allows a researcher to quickly conduct millions of chemical, genetic, or pharmacological tests. Through this process one can quickly recognize active compounds, antibodies, or genes that modulate a particular biomolecular pathway.