Summary
A pocket watch (or pocketwatch) is a watch that is made to be carried in a pocket, as opposed to a wristwatch, which is strapped to the wrist. They were the most common type of watch from their development in the 16th century until wristwatches became popular after World War I during which a transitional design, trench watches, were used by the military. Pocket watches generally have an attached chain to allow them to be secured to a waistcoat, lapel, or belt loop, and to prevent them from being dropped. Watches were also mounted on a short leather strap or fob, when a long chain would have been cumbersome or likely to catch on things. This fob could also provide a protective flap over their face and crystal. Women's watches were normally of this form, with a watch fob that was more decorative than protective. Chains were frequently decorated with a silver or enamel pendant, often carrying the arms of some club or society, which by association also became known as a fob. Ostensibly practical gadgets such as a watch winding key, vesta case, or a cigar cutter also appeared on watch chains, although usually in an overly decorated style. Also common are fasteners designed to be put through a buttonhole and worn in a jacket or waistcoat, this sort being frequently associated with and named after train conductors. An early reference to the pocket watch is in a letter in November 1462 from the Italian clockmaker Bartholomew Manfredi to the Marchese di Mantova Federico Gonzaga, where he offers him a "pocket clock" better than that belonging to the Duke of Modena. By the end of the 15th century, spring-driven clocks appeared in Italy, and in Germany. Peter Henlein, a master locksmith of Nuremberg, was regularly manufacturing pocket watches by 1526. Thereafter, pocket watch manufacture spread throughout the rest of Europe as the 16th century progressed. Early watches only had an hour hand, the minute hand appearing in the late 17th century. History of watches The first timepieces to be worn, made in 16th-century Europe, were transitional in size between clocks and watches.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (9)
ME-419: Production management
Production management deals with producing goods sustainably at the right time, quantity, and quality with the minimum cost. This course equips students with practical skills and tools for effectively
PHYS-100: Advanced physics I (mechanics)
La Physique Générale I (avancée) couvre la mécanique du point et du solide indéformable. Apprendre la mécanique, c'est apprendre à mettre sous forme mathématique un phénomène physique, en modélisant l
PHYS-201(d): General physics: electromagnetism
The topics covered by the course are concepts of fluid mechanics, waves, and electromagnetism.
Show more
Related lectures (46)
Innovation: Novel vs. Innovative
Discusses innovation, learning from failure, creating value, challenges in hardware and software development, and the role of early adopters.
Mechanical Horology Fundamentals
Explores the fundamentals of mechanical horology, emphasizing isochronism, friction reduction, and precision in timekeeping devices.
Fusion Energy: Physics of Tokamaks
Covers the physics of tokamaks and the ITER Project for sustainable fusion energy production.
Show more
Related publications (32)

Pivot, process for manufacturing such a pivot, oscillator comprising such a pivot, watch movement and timepiece comprising such an oscillator

Simon Nessim Henein, Loïc Benoît Tissot-Daguette

The present invention concerns a pivot comprising two assemblies, namely a central assembly (401) and a peripheral assembly (400). These two assemblies are mobile in rotation relative to each other around an axis of rotation (A). The pivot is characterized ...
2024

Hydraulically Amplified Electrostatic Taxels (HAXELs) for Full Body Haptics

Herbert Shea, Edouard Franck Vincent Gustave Leroy

The ability to mechanically stimulate touch receptors over the entire body is a key feature for fully immersive and highly realistic virtual reality experience. Haptic stickers, flexible arrays of HAXELs (hydraulically amplified TAXels), that enable cutane ...
WILEY2023

Enhancing our understanding of human fine manipulation skills and advancing robot dexterity in grasping

Kunpeng Yao

From surgery to watchmaking, fine-manipulation skills highly rely on the dexterity afforded by both hands. Coordination is key to human dexterity. Specifically, humans need not only to govern the abundant intrinsic degrees of freedom (DOFs) to allocate con ...
EPFL2022
Show more
Related concepts (7)
Mainspring
A mainspring is a spiral torsion spring of metal ribbon—commonly spring steel—used as a power source in mechanical watches, some clocks, and other clockwork mechanisms. Winding the timepiece, by turning a knob or key, stores energy in the mainspring by twisting the spiral tighter. The force of the mainspring then turns the clock's wheels as it unwinds, until the next winding is needed. The adjectives wind-up and spring-powered refer to mechanisms powered by mainsprings, which also include kitchen timers, metronomes, music boxes, wind-up toys and clockwork radios.
Clockmaker
A clockmaker is an artisan who makes and/or repairs clocks. Since almost all clocks are now factory-made, most modern clockmakers only repair clocks. Modern clockmakers may be employed by jewellers, antique shops, and places devoted strictly to repairing clocks and watches. Clockmakers must be able to read blueprints and instructions for numerous types of clocks and time pieces that vary from antique clocks to modern time pieces in order to fix and make clocks or watches.
Quartz clock
Quartz clocks and quartz watches are timepieces that use an electronic oscillator regulated by a quartz crystal to keep time. This crystal oscillator creates a signal with very precise frequency, so that quartz clocks and watches are at least an order of magnitude more accurate than mechanical clocks. Generally, some form of digital logic counts the cycles of this signal and provides a numerical time display, usually in units of hours, minutes, and seconds.
Show more