In semiconductor electronics fabrication technology, a self-aligned gate is a transistor manufacturing approach whereby the gate electrode of a MOSFET (metal–oxide–semiconductor field-effect transistor) is used as a mask for the doping of the source and drain regions. This technique ensures that the gate is naturally and precisely aligned to the edges of the source and drain. The use of self-aligned gates in MOS transistors is one of the key innovations that led to the large increase in computing power in the 1970s. Self-aligned gates are still used in most modern integrated circuit processes. Semiconductor device fabrication Integrated circuits (ICs, or "chips") are produced in a multi-step process that builds up multiple layers on the surface of a disk of silicon known as a "wafer". Each layer is patterned by coating the wafer in photoresist and then exposing it to ultraviolet light being shone through a stencil-like "mask". Depending on the process, the photoresist that was exposed to light either hardens or softens, and in either case, the softer parts are then washed away. The result is a microscopic pattern on the surface of the wafer where a portion of the top layer is exposed while the rest is protected under the remaining photoresist. The wafer is then exposed to a variety of processes that add or remove materials from the portions of the wafer that are unprotected by the photoresist. In one common process, the wafer is heated to around 1000 C and then exposed to a gas containing a doping material (commonly boron or phosphorus) that changes the electrical properties of the silicon. This allows the silicon to become an electron donor, electron receptor, or near-insulator depending on the type and/or amount of the dopant. In a typical IC this process is used to produce the individual transistors that make up the key elements of an IC. In the MOSFET, the three parts of a transistor are the source, the drain, and the gate (see diagram). The "field effect" in the name refers to changes to the conductivity that occur when a voltage is placed on the gate.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (5)
EE-320: Analog IC design
Introduction to the design of analog CMOS integrated circuits at the transistor level. Understanding and design of basic structures.
EE-523: Advanced analog integrated circuit design
Introduction to advanced topics in analog and mixed-signal CMOS circuits at the transistor level. The course will focus on practical aspects of IC design, quantitative performance measures, and design
EE-330: Digital IC design
Digital IC Design presents the fundamentals of digital integrated circuit design. The methods and techniques aiming at the fabrication and development of digital integrated circuits are reviewed, the
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.