A mixed-signal integrated circuit is any integrated circuit that has both analog circuits and digital circuits on a single semiconductor die. Their usage has grown dramatically with the increased use of cell phones, telecommunications, portable electronics, and automobiles with electronics and digital sensors. Integrated circuits (ICs) are generally classified as digital (e.g. a microprocessor) or analog (e.g. an operational amplifier). Mixed-signal ICs contain both digital and analog circuitry on the same chip, and sometimes embedded software. Mixed-signal ICs process both analog and digital signals together. For example, an analog-to-digital converter (ADC) is a typical mixed-signal circuit. Mixed-signal ICs are often used to convert analog signals to digital signals so that digital devices can process them. For example, mixed-signal ICs are essential components for FM tuners in digital products such as media players, which have digital amplifiers. Any analog signal can be digitized using a very basic ADC, and the smallest and most energy efficient of these are mixed-signal ICs. Mixed-signal ICs are more difficult to design and manufacture than analog-only or digital-only integrated circuits. For example, an efficient mixed-signal IC may have its digital and analog components share a common power supply. However, analog and digital components have very different power needs and consumption characteristics, which makes this a non-trivial goal in chip design. Mixed-signal functionality involves both traditional active elements (like transistors) and well-performing passive elements (like coils, capacitors, and resistors) on the same chip. This requires additional modelling understanding and options from manufacturing technologies. High voltage transistors might be needed in the power management functions on a chip with digital functionality, possibly with a low-power CMOS processor system. Some advanced mixed-signal technologies may enable combining analog sensor elements (like pressure sensors or imaging diodes) on the same chip with an ADC.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related concepts (19)
Application-specific integrated circuit
An application-specific integrated circuit (ASIC ˈeɪsɪk) is an integrated circuit (IC) chip customized for a particular use, rather than intended for general-purpose use, such as a chip designed to run in a digital voice recorder or a high-efficiency video codec. Application-specific standard product chips are intermediate between ASICs and industry standard integrated circuits like the 7400 series or the 4000 series. ASIC chips are typically fabricated using metal–oxide–semiconductor (MOS) technology, as MOS integrated circuit chips.
Electronic component
An electronic component is any basic discrete electronic device or physical entity part of an electronic system used to affect electrons or their associated fields. Electronic components are mostly industrial products, available in a singular form and are not to be confused with electrical elements, which are conceptual abstractions representing idealized electronic components and elements. Electronic components have a number of electrical terminals or leads.
Silicon–germanium
SiGe (ˈsɪɡiː or ˈsaɪdʒiː), or silicon–germanium, is an alloy with any molar ratio of silicon and germanium, i.e. with a molecular formula of the form Si1−xGex. It is commonly used as a semiconductor material in integrated circuits (ICs) for heterojunction bipolar transistors or as a strain-inducing layer for CMOS transistors. IBM introduced the technology into mainstream manufacturing in 1989. This relatively new technology offers opportunities in mixed-signal circuit and analog circuit IC design and manufacture.
Show more