Gaia is a space observatory of the European Space Agency (ESA), launched in 2013 and expected to operate until 2025. The spacecraft is designed for astrometry: measuring the positions, distances and motions of stars with unprecedented precision, and the positions of exoplanets by measuring attributes about the stars they orbit such as their apparent magnitude and color. The mission aims to construct by far the largest and most precise 3D space catalog ever made, totalling approximately 1 billion astronomical objects, mainly stars, but also planets, comets, asteroids and quasars, among others. To study the precise position and motion of its target objects, the spacecraft monitored each of them about 70 times over the five years of the nominal mission (2014–2019), and continues to do so during its extension. The spacecraft has enough micro-propulsion fuel to operate until the second quarter of 2025. As its detectors are not degrading as fast as initially expected, the mission can be further extended. Gaia targets objects brighter than magnitude 20 in a broad photometric band that covers the extended visual range between near-UV and near infrared; such objects represent approximately 1% of the Milky Way population. Additionally, Gaia is expected to detect thousands to tens of thousands of Jupiter-sized exoplanets beyond the Solar System by using the astrometry method, 500,000 quasars outside this galaxy and tens of thousands of known and new asteroids and comets within the Solar System. The Gaia mission continues to create a precise three-dimensional map of astronomical objects throughout the Milky Way and map their motions, which encode the origin and subsequent evolution of the Milky Way. The spectrophotometric measurements provide detailed physical properties of all stars observed, characterizing their luminosity, effective temperature, gravity and elemental composition. This massive stellar census is providing the basic observational data to analyze a wide range of important questions related to the origin, structure and evolutionary history of the Milky Way galaxy.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Ontological neighbourhood
Related courses (1)
PHYS-643: Astrophysics VI : The variable Universe
Introduction to time-variable astrophysical objects and processes, from Space Weather to stars, black holes, and galaxies. Introduction to time-series analysis, instrumentation targeting variability,
Related lectures (10)
The Cosmic Distance Ladder
Explores the recalibration of the cosmic distance ladder using accurate photometry and Gaia parallaxes, addressing challenges and potential refinements.
Degenerate Stars: White Dwarfs & Neutron Stars
Covers the characteristics and origins of white dwarfs and neutron stars, including their structure, evolution, and pulsations.
Extrinsic Variable Stars
Covers extrinsic stellar variability, the history of double stars, microlensing, and extrasolar planet detection.
Show more
Related publications (82)
Related concepts (16)
Hipparcos
Hipparcos was a scientific satellite of the European Space Agency (ESA), launched in 1989 and operated until 1993. It was the first space experiment devoted to precision astrometry, the accurate measurement of the positions of celestial objects on the sky. This permitted the first high-precision measurements of the intrinsic brightnesses (compared to the less precise apparent brightness), proper motions, and parallaxes of stars, enabling better calculations of their distance and tangential velocity.
Milky Way
The Milky Way is the galaxy that includes the Solar System, with the name describing the galaxy's appearance from Earth: a hazy band of light seen in the night sky formed from stars that cannot be individually distinguished by the naked eye. The term Milky Way is a translation of the Latin via lactea, from the Greek γαλακτικὸς κύκλος (galaktikòs kýklos), meaning "milky circle". From Earth, the Milky Way appears as a band because its disk-shaped structure is viewed from within.
Photometry (astronomy)
Photometry, from Greek photo- ("light") and -metry ("measure"), is a technique used in astronomy that is concerned with measuring the flux or intensity of light radiated by astronomical objects. This light is measured through a telescope using a photometer, often made using electronic devices such as a CCD photometer or a photoelectric photometer that converts light into an electric current by the photoelectric effect. When calibrated against standard stars (or other light sources) of known intensity and colour, photometers can measure the brightness or apparent magnitude of celestial objects.
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.