Applied spectroscopy is the application of various spectroscopic methods for the detection and identification of different elements or compounds to solve problems in fields like forensics, medicine, the oil industry, atmospheric chemistry, and pharmacology.
A common spectroscopic method for analysis is Fourier transform infrared spectroscopy (FTIR), where chemical bonds can be detected through their characteristic infrared absorption frequencies or wavelengths. These absorption characteristics make infrared analyzers an invaluable tool in geoscience, environmental science, and atmospheric science. For instance, atmospheric gas monitoring has been facilitated by the development of commercially available gas analyzers which can distinguish between carbon dioxide, methane, carbon monoxide, oxygen, and nitric oxide.
Ultraviolet (UV) spectroscopy is used where strong absorption of UV radiation occurs in a substance. Such groups are known as chromophores and include aromatic groups, conjugated system of bonds, carbonyl groups and so on. Nuclear magnetic resonance spectroscopy detects hydrogen atoms in specific environments, and complements both infrared (IR) spectroscopy and UV spectroscopy. The use of Raman spectroscopy is growing for more specialist applications.
There are also derivative methods such as infrared microscopy, which allows very small areas to be analyzed in an optical microscope.
One method of elemental analysis that is important in forensic analysis is energy-dispersive X-ray spectroscopy (EDX) performed in the environmental scanning electron microscope (ESEM). The method involves analysis of back-scattered X-rays from the sample as a result of interaction with the electron beam. Automated EDX is further used in a range of automated mineralogy techniques for identification and textural mapping.
In all three spectroscopic methods, the sample usually needs to be present in solution, which may present problems during forensic examination because it necessarily involves sampling solid from the object to be examined.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Forensic polymer engineering is the study of failure in polymeric products. The topic includes the fracture of plastic products, or any other reason why such a product fails in service, or fails to meet its specification. The subject focuses on the material evidence from crime or accident scenes, seeking defects in those materials that might explain why an accident occurred, or the source of a specific material to identify a criminal.
Cracks can be formed in many different elastomers by ozone attack, and the characteristic form of attack of vulnerable rubbers is known as ozone cracking. The problem was formerly very common, especially in tires, but is now rarely seen in those products owing to preventive measures. However, it does occur in many other safety-critical items such as fuel lines and rubber seals, such as gaskets and O-rings, where ozone attack is considered unlikely. Only a trace amount of the gas is needed to initiate cracking, and so these items can also succumb to the problem.
Fourier-transform spectroscopy is a measurement technique whereby spectra are collected based on measurements of the coherence of a radiative source, using time-domain or space-domain measurements of the radiation, electromagnetic or not. It can be applied to a variety of types of spectroscopy including optical spectroscopy, infrared spectroscopy (FTIR, FT-NIRS), nuclear magnetic resonance (NMR) and magnetic resonance spectroscopic imaging (MRSI), mass spectrometry and electron spin resonance spectroscopy.
This course presents the theoretical bases of electronic spectroscopy and molecular photophysics. The principles of the reactivity of excited states of molecules and solids under irradiation are detai
Students will study fundamental principles of light-matter interaction and apply classical and quantum mechanical models for quantitative estimates. Optical phenomena in glasses, organic/inorganic sem
The students understand the relevant experimental and theoretical concepts of the nanoscale science. The course move from basic concepts like quantum size effects to hot fields such as spin transp
Our understanding of quantum materials is commonly based on precise determinations of their electronic spectrum by spectroscopic means, most notably angle-resolved photoemission spectroscopy (ARPES) and scanning tunneling microscopy. Both require atomicall ...
Solving native structures of such large molecules, like biomolecules, is often challenging, particularly due to the potentially infinite number of non-covalent interactions with water. In this thesis, we report the use of cold ion gas-phase action spectros ...
Protein ubiquitin in its +7 charge state microhydrated by 5 and 10 water molecules has been interrogated in the gas phase by cold ion UV/IR spectroscopy. The complexes were formed either by condensing water onto the unfolded bare proteins in a temperature- ...