Normal human body-temperature (normothermia, euthermia) is the typical temperature range found in humans. The normal human body temperature range is typically stated as .
Human body temperature varies. It depends on sex, age, time of day, exertion level, health status (such as illness and menstruation), what part of the body the measurement is taken at, state of consciousness (waking, sleeping, sedated), and emotions. Body temperature is kept in the normal range by a homeostatic function known as thermoregulation, in which adjustment of temperature is triggered by the central nervous system.
Taking a human's temperature is an initial part of a full clinical examination. There are various types of medical thermometers, as well as sites used for measurement, including:
In the rectum (rectal temperature)
In the mouth (oral temperature)
Under the arm (axillary temperature)
In the ear (tympanic temperature)
On the skin of the forehead over the temporal artery
Using heat flux sensors
Temperature control (thermoregulation) is a homeostatic mechanism that keeps the organism at optimum operating temperature, as the temperature affects the rate of chemical reactions. In humans, the average internal temperature is widely accepted to be 37 °C (98.6 °F), a "normal" temperature established in the 1800s. But newer studies show that average internal temperature for men and women is . No person always has exactly the same temperature at every moment of the day. Temperatures cycle regularly up and down through the day, as controlled by the person's circadian rhythm. The lowest temperature occurs about two hours before the person normally wakes up. Additionally, temperatures change according to activities and external factors.
In addition to varying throughout the day, normal body temperature may also differ as much as from one day to the next, so that the highest or lowest temperatures on one day will not always exactly match the highest or lowest temperatures on the next day.
Normal human body temperature varies slightly from person to person and by the time of day.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
The course equips students with a comprehensive scientific understanding of climate change covering a wide range of topics from physical principles, historical climate change, greenhouse gas emissions
This course covers the metallurgy, processing and properties of modern high-performance metals and alloys (e.g. advanced steels, Ni-base, Ti-base, High Entropy Alloys etc.). In addition, the principle
Learn the basics of cement chemistry and laboratory best practices for assessment of its key properties.
Temperature is a physical quantity that expresses quantitatively the perceptions of hotness and coldness. Temperature is measured with a thermometer. Thermometers are calibrated in various temperature scales that historically have relied on various reference points and thermometric substances for definition. The most common scales are the Celsius scale with the unit symbol °C (formerly called centigrade), the Fahrenheit scale (°F), and the Kelvin scale (K), the latter being used predominantly for scientific purposes.
Thermogenesis is the process of heat production in organisms. It occurs in all warm-blooded animals, and also in a few species of thermogenic plants such as the Eastern skunk cabbage, the Voodoo lily (Sauromatum venosum), and the giant water lilies of the genus Victoria. The lodgepole pine dwarf mistletoe, Arceuthobium americanum, disperses its seeds explosively through thermogenesis.
Thermoregulation is the ability of an organism to keep its body temperature within certain boundaries, even when the surrounding temperature is very different. A thermoconforming organism, by contrast, simply adopts the surrounding temperature as its own body temperature, thus avoiding the need for internal thermoregulation. The internal thermoregulation process is one aspect of homeostasis: a state of dynamic stability in an organism's internal conditions, maintained far from thermal equilibrium with its environment (the study of such processes in zoology has been called physiological ecology).
Dense and polished samples are sometimes used to test the in vitro biological response of biomaterials. However, their production can be challenging, for example for α-tricalcium phosphate (α-TCP), a commonly-used bone graft substitute. In this particular ...
The atmospheric layer adjacent to the earth's surface is of crucial importance for weather models due to the exchange of energy between the surface and the atmosphere. This exchange is dependent on the various surface properties and influences the state of ...
Objectives The endosymbiosis with Symbiodiniaceae is key to the ecological success of reef-building corals. However, climate change is threatening to destabilize this symbiosis on a global scale. Most studies looking into the response of corals to heat str ...