Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
We approach the graph generation problem from a spectral perspective by first generating the dominant parts of the graph Laplacian spectrum and then building a graph matching these eigenvalues and eigenvectors. Spectral conditioning allows for direct model ...
Consider the family of bounded degree graphs in any minor-closed family (such as planar graphs). Let d be the degree bound and n be the number of vertices of such a graph. Graphs in these classes have hyperfinite decompositions, where, one removes a small ...
With the increasing prevalence of massive datasets, it becomes important to design algorithmic techniques for dealing with scenarios where the input to be processed does not fit in the memory of a single machine. Many highly successful approaches have emer ...
We considerm-colorings of the edges of a complete graph, where each color class is defined semi-algebraically with bounded complexity. The casem= 2 was first studied by Alon et al., who applied this framework to obtain surprisingly strong Ramsey-type resul ...
Given a graph H and a set of graphs F, let ex(n, H, F) denote the maximum possible number of copies of H in an T-free graph on n vertices. We investigate the function ex(n, H, F), when H and members of F are cycles. Let C-k denote the cycle of length k and ...
Fix a prime number l. Graphs of isogenies of degree a power of l are well-understood for elliptic curves, but not for higher-dimensional abelian varieties. We study the case of absolutely simple ordinary abelian varieties over a finite field. We analyse gr ...
The extension complexity xc(P) of a polytope P is the minimum number of facets of a polytope that affinely projects to P. Let G be a bipartite graph with n vertices, m edges, and no isolated vertices. Let STAB(G) be the convex hull of the stable sets of G. ...
In this paper, we design a new iterative low-complexity algorithm for computing the Walsh-Hadamard transform (WHT) of an N dimensional signal with a K-sparse WHT. We suppose that N is a power of two and K = O(N^α), scales sub-linearly in N for some α ∈ (0, ...
Institute of Electrical and Electronics Engineers2015
We study the stable matching problem in non-bipartite graphs with incomplete but strict preference lists, where the edges have weights and the goal is to compute a stable matching of minimum or maximum weight. This problem is known to be NP-hard in general ...
Let G = (V, E) be a graph with n vertices and m >= 4n edges drawn in the plane. The celebrated Crossing Lemma states that G has at least Omega(m(3)/n(2)) pairs of crossing edges; or equivalently, there is an edge that crosses Omega(m(2)/n(2)) other edges. ...