La cohomologie de Čech est une théorie cohomologique, développée à l'origine par le mathématicien Eduard Čech en faisant jouer au nerf d'un recouvrement sur un espace topologique le rôle des simplexes en homologie simpliciale. On peut définir une cohomologie de Čech pour les faisceaux, ou plus généralement pour les objets d'un site, en particulier une catégorie de schémas munie de la topologie de Zariski.
La cohomologie de Čech vérifie en particulier les axiomes d'Eilenberg-Steenrod, et se reconnecte avec d'autres théories cohomologiques dans plusieurs cas :
Si X est homotopiquement équivalent à un CW-complexe, sa cohomologie de Čech est naturellement isomorphe à sa cohomologie singulière ;
Si X est une variété différentielle, sa cohomologie de Čech à coefficients réels est isomorphe à sa cohomologie de De Rham (théorème de De Rham) ;
Si X est un espace topologique quelconque, sa cohomologie de Čech à coefficients dans un groupe discret est isomorphe à sa cohomologie d'Alexander-Spanier ;
Il existe toujours une application , de la cohomologie des faisceaux vers la cohomologie de Čech, qui est un isomorphisme pour n = 0, 1. D'autres liens existent, comme le .
Comme toute théorie cohomologique, la cohomologie de Čech représente une certaine « obstruction » au recollement de solutions locales en une solution globale.
On se place dans un site et on considère un schéma X. La cohomologie de Čech à coefficients dans un faisceau est donnée par la limite inductive
où parcourt les recouvrements de X donnés par la topologie, ordonnés par raffinement.
Il ne reste alors plus qu'à définir la cohomologie de Čech sur un recouvrement ouvert donné , c'est-à-dire donner les cocycles et cobords correspondants. Pour simplifier, supposons l'ensemble des indices totalement ordonné. Le groupe des k-cochaînes est défini par :
En d'autres termes, une k-cochaîne de Čech est une fonction définie sur les k-faces du nerf du recouvrement, telle que les valeurs prises sur les ouverts qui le constituent sont dans .
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Singular cohomology is defined by dualizing the singular chain complex for spaces. We will study its basic properties, see how it acquires a multiplicative structure and becomes a graded commutative a
Homology is one of the most important tools to study topological spaces and it plays an important role in many fields of mathematics. The aim of this course is to introduce this notion, understand its
Les groupes de cohomologie d'un faisceau de groupes abéliens sont les groupes de cohomologie du complexe de cochaines. Les groupes de cohomologie d'un faisceau de groupes abéliens sont les groupes de cohomologie du complexe de cochaines : où est une résolution injective du faisceau , et désigne le groupe abélien des sections globales de . A unique isomorphisme canonique près, ces groupes ne dépendent pas de la résolution injective choisie. Le zéroième groupe est canoniquement isomorphe à .
En mathématiques, la cohomologie de De Rham est un outil de topologie différentielle, c'est-à-dire adapté à l'étude des variétés différentielles. Il s'agit d'une théorie cohomologique fondée sur des propriétés algébriques des espaces de formes différentielles sur la variété. Elle porte le nom du mathématicien Georges de Rham. Le affirme que le morphisme naturel, de la cohomologie de De Rham d'une variété différentielle vers sa cohomologie singulière à coefficients réels, est bijectif.
In mathematics, especially in algebraic geometry and the theory of complex manifolds, coherent sheaf cohomology is a technique for producing functions with specified properties. Many geometric questions can be formulated as questions about the existence of sections of line bundles or of more general coherent sheaves; such sections can be viewed as generalized functions. Cohomology provides computable tools for producing sections, or explaining why they do not exist. It also provides invariants to distinguish one algebraic variety from another.
In this thesis, we apply cochain complexes as an algebraic model of space in a diverse range of mathematical and scientific settings. We begin with an algebraic-discrete Morse theory model of auto-encoding cochain data, connecting the homotopy theory of d ...
EPFL2024
The Cartan formula encodes the relationship between the cup product and the action of the Steenrod algebra in F-p-cohomology. In this work, we present an effective proof of the Cartan formula at the cochain level when the field is F-2. More explicitly, for ...
Let R be a semilocal Dedekind domain with fraction field F. It is shown that two hereditary R-orders in central simple F-algebras that become isomorphic after tensoring with F and with some faithfully flat etale R-algebra are isomorphic. On the other hand, ...