Summary
Internal waves are gravity waves that oscillate within a fluid medium, rather than on its surface. To exist, the fluid must be stratified: the density must change (continuously or discontinuously) with depth/height due to changes, for example, in temperature and/or salinity. If the density changes over a small vertical distance (as in the case of the thermocline in lakes and oceans or an atmospheric inversion), the waves propagate horizontally like surface waves, but do so at slower speeds as determined by the density difference of the fluid below and above the interface. If the density changes continuously, the waves can propagate vertically as well as horizontally through the fluid. Internal waves, also called internal gravity waves, go by many other names depending upon the fluid stratification, generation mechanism, amplitude, and influence of external forces. If propagating horizontally along an interface where the density rapidly decreases with height, they are specifically called interfacial (internal) waves. If the interfacial waves are large amplitude they are called internal solitary waves or internal solitons. If moving vertically through the atmosphere where substantial changes in air density influences their dynamics, they are called anelastic (internal) waves. If generated by flow over topography, they are called Lee waves or mountain waves. If the mountain waves break aloft, they can result in strong warm winds at the ground known as Chinook winds (in North America) or Foehn winds (in Europe). If generated in the ocean by tidal flow over submarine ridges or the continental shelf, they are called internal tides. If they evolve slowly compared to the Earth's rotational frequency so that their dynamics are influenced by the Coriolis effect, they are called inertia gravity waves or, simply, inertial waves. Internal waves are usually distinguished from Rossby waves, which are influenced by the change of Coriolis frequency with latitude.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.