Spasticity () is a feature of altered skeletal muscle performance with a combination of paralysis, increased tendon reflex activity, and hypertonia. It is also colloquially referred to as an unusual "tightness", stiffness, or "pull" of muscles.
Clinically, spasticity results from the loss of inhibition of motor neurons, causing excessive velocity-dependent muscle contraction. This ultimately leads to hyperreflexia, an exaggerated deep tendon reflex. Spasticity is often treated with the drug baclofen, which acts as an agonist at GABA receptors, which are inhibitory.
Spastic cerebral palsy is the most common form of cerebral palsy, which is a group of permanent movement problems that do not get worse over time. GABA's inhibitory actions contribute to baclofen's efficacy as an anti-spasticity agent.
Spasticity mostly occurs in disorders of the central nervous system (CNS) affecting the upper motor neurons in the form of a lesion, such as spastic diplegia, or upper motor neuron syndrome, and can also be present in various types of multiple sclerosis, where it occurs as a symptom of the progressively-worsening attacks on myelin sheaths and is thus unrelated to the types of spasticity present in neuromuscular cerebral palsy rooted spasticity disorders.
The cause of spasticity is thought to be where an imbalance occurs in the excitatory and inhibitory input to α motor neurons caused by damage to the spinal cord and/or central nervous system. The damage causes a change in the balance of signals between the nervous system and the muscles, leading to increased excitability in muscles. This is common in people who have cerebral palsy, brain injuries or a spinal cord injury, but it can happen to anybody e.g. having a stroke.
One factor that is thought to be related to spasticity is the stretch reflex. This reflex is important in coordinating normal movements in which muscles are contracted and relaxed and in keeping the muscle from stretching too far.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
A spinal cord injury (SCI) is damage to the spinal cord that causes temporary or permanent changes in its function. Symptoms may include loss of muscle function, sensation, or autonomic function in the parts of the body served by the spinal cord below the level of the injury. Injury can occur at any level of the spinal cord and can be complete, with a total loss of sensation and muscle function at lower sacral segments, or incomplete, meaning some nervous signals are able to travel past the injured area of the cord up to the Sacral S4-5 spinal cord segments.
A stroke is a medical condition in which poor blood flow to the brain causes cell death. There are two main types of stroke: ischemic, due to lack of blood flow, and hemorrhagic, due to bleeding. Both cause parts of the brain to stop functioning properly. Signs and symptoms of a stroke may include an inability to move or feel on one side of the body, problems understanding or speaking, dizziness, or loss of vision to one side. Signs and symptoms often appear soon after the stroke has occurred.
Upper motor neurons (UMNs) is a term introduced by William Gowers in 1886. They are found in the cerebral cortex and brainstem and carry information down to activate interneurons and lower motor neurons, which in turn directly signal muscles to contract or relax. UMNs in the cerebral cortex are the main source of voluntary movement. They are the larger pyramidal cells in the cerebral cortex. There is a type of giant pyramidal cell called Betz cells and are found just below the surface of the cerebral cortex within layer V of the primary motor cortex.
Locomotion is based on a sophisticated interaction among the environment, the musculoskeletal system, the spinal cord, and the brain locomotor areas. Quality of life is strongly related to the proper capability of this movement. However, many pathologies, ...
EPFL2023
, , , , ,
The present invention relates to a neuromodulation/neurostimulation system (10) for the treatment of spasticity in a mammal, said system (10) comprising: - at least one control unit (12) configured and arranged to provide stimulation data, and - at least o ...
In recent years, soft robotics has surged in applications like wearables, drones, smart fabrics, and medical instruments. Due to their compliance, these devices excel in tasks demanding dexterity and adaptability, such as manipulation, locomotion, crash re ...