Francesco Mondada, Jean-Philippe Pellet, Laila Abdelsalam El-Hamamsy, Christian Giang, Vaios Papaspyros, Evgeniia Bonnet, Bernard Baumberger
Computational thinking (CT) is considered an emerging competence domain linked to 21st-century competences, and educational robotics (ER) is increasingly recognised as a tool to develop CT competences. This is why researchers recommend developing intervention methods adapted to classroom practice and providing explicit guidelines to teachers on integrating ER activities. The present study thus addresses this challenge. Guidance and feedback were considered as critical intervention methods to foster CT competences in ER settings. A between-subjects experiment was conducted with 66 students aged 8 to 9 in the context of a remote collaborative robot programming mission, with four experimental conditions. A two-step strategy was employed to report students' CT competence (their performance and learning process). Firstly, the students' CT learning gains were measured through a pre-post-test design. Secondly, video analysis was used to identify the creative computational problem-solving patterns involved in the experimental condition that had the most favourable impact on the students’ CT scores. Results show that delayed feedback is an effective intervention method for CT development in ER activities. Subject to delayed feedback, students are better at formulating the robot behaviour to be programmed, and, thus, such a strategy reinforces the anticipation process underlying the CT.
2022