Control of legged locomotion using dynamical systems
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
The high agility of legged systems allows them to operate in rugged outdoor environments. In these situations, knowledge about the terrain geometry is key for foothold planning to enable safe locomotion. However, on penetrable or highly compliant terrain ( ...
The task of robotic mobile manipulation poses several scientific challenges that need to be addressed to execute complex manipulation tasks in unstructured environments, in which collaboration with humans might be required. Therefore, we present ALMA, a mo ...
We present a trajectory optimizer for quadrupedal robots with actuated wheels. By solving for angular, vertical, and planar components of the base and feet trajectories in a cascaded fashion and by introducing a novel linear formulation of the zeromoment p ...
Animals display an enormous versatility and a remarkable ability to adapt to changes in environment and terrain. Research in bio-inspired robotics strives to transfer these skills to robots, including legged systems. Even though animals seemingly effortles ...
A sprawled posture amphibious biorobot resembling a salamander had helped us in conquering scientific questions of the locomotion of these animals and offer us with technological possibilities for applications in disaster response. However, so far the foot ...
Insects are a constant source of inspiration for roboticists. Their compliant bodies allow them to squeeze through small openings and be highly resilient to impacts. However, making sub-gram autonomous soft robots, untethered and capable of responding inte ...
The development of robots that can dance has received considerable attention. However, they are often either limited to a pre-defined set of movements and music or demonstrate little variance when reacting to external stimuli, such as microphone or camera ...
In ant colonies, collectivity enables division of labour and resources with great scalability. Beyond their intricate social behaviours, individuals of the genus Odontomachus, also known as trap-jaw ants, have developed remarkable multi-locomotion mechanis ...
Legged robots pose one of the greatest challenges in robotics. Dynamic and agile maneuvers of animals cannot be imitated by existing methods that are crafted by humans. A compelling alternative is reinforcement learning, which requires minimal craftsmanshi ...
Transferring solutions found by trajectory optimization to robotic hardware remains a challenging task. When the optimization fully exploits the provided model to perform dynamic tasks, the presence of unmodeled dynamics renders the motion infeasible on th ...