High-density electrode array for imaging in vitro electrophysical activity
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Brain-machine interfaces hold promise for restoring basic functions such as movement or speech for severely disabled patients, as well as for controlling neuroprosthetic devices for amputees. One of the major challenges of clinically viable neuroprostheses ...
Recently, CMOS-based microelectrode arrays containing a high-density of electrodes have emerged as a tool enabling recording the extracellular neural electrical activity of cell cultures at subcellular resolution. However, several improvements in areas suc ...
In the past decades, two recording tools have established themselves as the working horses in the field of electrophysiological cell research: the microelectrode array (MEA) and the optical fluorescence imaging. The former is a grid of miniature electrodes ...
Intracranial EEG information used for epilepsy surgery has been provided from large widely spaced electrodes over a narrow bandwidth. However, over the last decades, research on animal and more recently on human, promoted by increased interest in developin ...
Multielectrode arrays (MEAs) are extensively used for electrophysiological studies on brain slices, but the spatial resolution and field of recording of conventional arrays are limited by the low number of electrodes available. Here, we present a large-sca ...
Future emerging technologies in upper limb neuroprosthetic devices will require decoding and executing the user's intended movement. Previous studies, using invasive and non-invasive brain signals, have shown promising results in decoding movement directio ...
Microelectrode arrays (MEAs) are employed to study extracellular electrical activity in neuronal tissues. Neverthe- less, commercially available MEAs provide a limited number of recording sites and do not allow a precise identifi- cation of the spatio-temp ...
Presently, the cells' electrical activity is measured either by extracellular microelectrode array (MEA) or by microscopic fluorescence imaging methods. The MEA is a non-invasive in vitro technique which allows long-term recording at multicellular level wh ...
We applied microelectrode array (MEA) recordings to study the generation and propagation of epileptform activity in various connected regions of cortico-hippocampal slices obtained from SynapsinI/II/III knockout (TKO) mice and the effects of the synaptic v ...
An innovative readout channel, based on analog amplitude modulation of the signals recorded by each sensing site, is developed for high-density CMOS-based microelectrode arrays. A single amplification stage simultaneously records the neural activity acquir ...