Publication

Learning and reproduction of gestures by imitation: An approach based on Hidden Markov Model and Gaussian Mixture Regression

Abstract

We present a probabilistic approach to learn robust models of human motion through imitation. The association of Hidden Markov Model (HMM), Gaussian Mixture Regression (GMR) and dynamical systems allows us to extract redundancies across multiple demonstrations and build time-independent models to reproduce the dynamics of the demonstrated movements. The approach is first systematically evaluated and compared with other approaches by using generated trajectories sharing similarities with human gestures. Three applications on different types of robots are then presented. An experiment with the iCub humanoid robot acquiring a bimanual dancing motion is first presented to show that the system can also handle cyclic motion. An experiment with a 7 DOFs WAM robotic arm learning the motion of hitting a ball with a table tennis racket is presented to highlight the possibility to encode several variations of a movement in a single model. Finally, an experiment with a HOAP-3 humanoid robot learning to manipulate a spoon to feed the Robota humanoid robot is presented to demonstrate the capability of the system to handle several constraints simultaneously.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.