Hierarchical Multilayer Perceptron based Language Identification
Related publications (33)
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
With ever greater computational resources and more accessible software, deep neural networks have become ubiquitous across industry and academia.
Their remarkable ability to generalize to new samples defies the conventional view, which holds that complex, ...
Model-based approaches to Speaker Verification (SV), such as Joint Factor Analysis (JFA), i-vector and relevance Maximum-a-Posteriori (MAP), have shown to provide state-of-the-art performance for text-dependent systems with fixed phrases. The performance o ...
Character-level Neural Machine Translation(NMT) models have recently achieved impressive results on many language pairs. They mainly do well for Indo-European language pairs, where the languages share the same writing system. However, for translating betwe ...
As an indicator of human attention gaze is a subtle behavioral cue which can be exploited in many applications. However, inferring 3D gaze direction is challenging even for deep neural networks given the lack of large amount of data (groundtruthing gaze is ...
Deep learning relies on a very specific kind of neural networks: those superposing several neural layers. In the last few years, deep learning achieved major breakthroughs in many tasks such as image analysis, speech recognition, natural language processin ...
Most recent approaches to monocular 3D pose estimation rely on Deep Learning. They either train a Convolutional Neural Network to directly regress from an image to a 3D pose, which ignores the dependencies between human joints, or model these dependencies ...
Deep learning has been immensely successful at a variety of tasks, ranging from classification to artificial intelligence. Learning corresponds to fitting training data, which is implemented by descending a very high-dimensional loss function. Understandin ...
Our brain continuously self-organizes to construct and maintain an internal representation of the world based on the information arriving through sensory stimuli. Remarkably, cortical areas related to different sensory modalities appear to share the same f ...
For a long time, natural language processing (NLP) has relied on generative models with task specific and manually engineered features. Recently, there has been a resurgence of interest for neural networks in the machine learning community, obtaining state ...
Over these last few years, the use of Artificial Neural Networks (ANNs), now often referred to as deep learning or Deep Neural Networks (DNNs), has significantly reshaped research and development in a variety of signal and information processing tasks. Whi ...