Progresses in III-nitride distributed Bragg reflectors and microcavities using AlInN/GaN materials
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Since the dawn of humanity, human beings seeked to light their surroundings for their well-being, security and development. The efficiency of ancient lighting devices, e.g. oil lamps or candles, was in the order of 0.03-0.04% and jumped to 0.4-0.6% with th ...
GaN exhibits a decomposition tendency for temperatures far below its melting point and common growth temperatures used in metal-organic vapour phase epitaxy (MOVPE).This characteristic is known to be a major obstacle for realising GaN bulk substrate. There ...
Over the past 20 years, III-nitrides (GaN, AlN, InN and their alloys) have proven to be an excellent material group for electronic devices, in particular, for high electron mobility transistors (HEMTs) operating at high frequency and high power. This is ma ...
Photonic crystal (PhC) cavities combine ultra-high quality (Q) factors with small mode volumes, resulting in an enhancement of the light-matter interaction at the nanoscale, which, beyond fundamental studies is advantageous for countless applications in ph ...
Optical nanocavities enhance light-matter interaction due to their high quality factors (Q) and small modal volumes (V). The control of light-matter interaction lies at the heart of potential applications for integrated optical circuits, including optical ...
Over the past decade, a growing interest appeared for III-nitride semiconductors, in view of their potential applications in intersubband (ISB) devices. If these materials are nowadays famous, particularly for having revolutionized domestic lighting thanks ...
Group III-nitrides have been considered a promising choice for the realization of optoelectronic devices since 1970. Since the first demonstration of the high-brightness blue light-emitting diodes (LEDs) by Shuji Nakamura and coworkers, the fabrication of ...
We report on the development of electrochemical etching technology for the production of multilayer porous structures |(MPS) allowing one to fabricate Bragg reflectors on the basis of GaN bulk substrates grown by Hydride Vapor Phase Epitaxy |(HVPE). The fo ...
Thin-wall tubes composed of nitride semiconductors (III-N compounds) based on GaN/InAlN multiple quantum wells (MQWs) are fabricated by metalorganic vapor-phase epitaxy in a simple and full III-N approach. The synthesis of such MQW-tubes is based on the gr ...
IIIV photonics on silicon is an active and promising research area. Here, we demonstrate room-temperature (RT) lasing in short-wavelength III-nitride photonic crystal nanobeam cavities grown on silicon featuring a single InGaN quantum well (QW). In the low ...