We address degradation aspects of lattice-matched unpassivated InAlN/GaN high-electron-mobility transistors (HEMTs). Stress conditions include an off-state stress, a semi-on stress (with a partially opened channel), and a negative gate bias stress (with source and drain contacts grounded). Degradation is analyzed by measuring the drain current, a threshold voltage, a Schottky contact barrier height, a gate leakage and an ideality factor, an access, and an intrinsic channel resistance, respectively. For the drain-gate bias < 38 V parameters are only reversibly degraded due to charging of the pre-existing surface states. This is in a clear contrast to reported AlGaN/GaN HEMTs where an irreversible damage and a lattice relaxation have been found for similar conditions. For drain-gate biases over 38 V InAlN/GaN HEMTs show again only temporal changes for the negative gate bias stresses; however, irreversible damage was found for the off-state and for the semi-on stresses. Most severe changes, an increase in the intrinsic channel resistance by one order of magnitude and a decrease in the drain current by similar to 70%, are found after the off-state similar to 50 V drain-gate bias stresses. We conclude that in the off-state condition hot electrons may create defects or ionize deep states in the GaN buffer or at the InAlN/GaN interface. If an InAlN/GaN HEMT channel is opened during the stress, lack of the strain in the barrier layer is beneficial for enhancing the device stability.
Elison de Nazareth Matioli, Luca Nela, Taifang Wang
Elison de Nazareth Matioli, Luca Nela, Catherine Erine