Suppression of leakage currents in GaN-based LEDs induced by reactive-ion etching damages
Related publications (33)
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
A quantum dot is a semiconductor nanostructure that confines the motion of conduction band electrons and valence band holes in all three spatial directions, thus creating fully discrete energy levels. The confinement in the InAs/GaAs material system is gen ...
We study photonic crystal (PhC)-assisted light extraction from gallium nitride (GaN) light-emitting diodes (LEDs). We focus on the issue of omnidirectional extraction, and we introduce a complex crystal lattice, namely the Archimedean tiling, which enables ...
Gallium Nitride (GaN) and its ternary alloys with aluminium and indium have met a growing interest in the last decade. These semiconductors have a large direct bandgap and can be doped with either silicon (Si) for n-type and magnesium (Mg) for p-type layer ...
It was about 125 years ago that the light bulb was commercialized by Thomas Edison. No doubt a brilliant invention at the time, today its low power conversion efficiency is one of the reasons why lighting in the western world has such high energy consumpti ...
We report direct evidence of enhanced spontaneous emission in a photonic-crystal (PhC) light-emitting diode. The device consists of p-i-n heterojunction embedded in a suspended membrane, comprising a layer of self-assembled quantum dots. Current is injecte ...
The performance of novel AlInN/GaN HEMTs for high power / high temperature applications is discussed. With 0.25 mu m gate length the highest maximum output current density of more than 2 A/mm at room temperature and more than 3 A/mm at 77 K have been obtai ...
The authors report on InGaN microcavity light-emitting diodes with an effective thickness of similar to 450 nm at the emission wavelength of similar to 415 nm. The starting material for the flip-chip laser lift-off device is a structure with an active regi ...
High quality AlInN was grown near lattice-matched to GaN. It shows about 7% index contrast with GaN. AlInN is thus a promising alternative to AlGaN, as demonstrated by a 20-pairs AlInN/GaN distributed Bragg reflector with over 90% reflectivity. Light emitt ...
Resonant-cavity InGaN/GaN quantum well light emitting diodes have been fabricated. Nitride layers were grown by molecular beam epitaxy on Si (111). We fabricated the structures using a combination of Si substrate etching, GaN etching and dielectric (Ta2O5/ ...
Limitations in extraction efficiency of gallium nitride (GaN) photonic crystal (PhC) light emitting diodes (LEDs) are addressed by implementing an LED design using both two-dimensional PhCs in-plane and index guiding layers (IGLs) in the vertical direction ...