An Improved Predictive Accuracy Bound for Averaging Classifiers
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
One of the most classical results in high-dimensional learning theory provides a closed-form expression for the generalisation error of binary classification with a single-layer teacher-student perceptron on i.i.d. Gaussian inputs. Both Bayes-optimal (BO) ...
Effective fall-detection and classification systems are vital in mitigating severe medical and economical consequences of falls to people in the fall risk groups. One class of such systems is based on wearable sensors. While there is a vast amount of acade ...
A simple predictive biomarker for fatty liver disease is required for individuals with insulin resistance. Here, we developed a supervised machine learning-based classifier for fatty liver disease using fecal 16S rDNA sequencing data. Based on the Kangbuk ...
Early and accurate detection of epileptic seizures is an extremely important therapeutic goal due to the severity of complications it can prevent. To this end, a low-power machine learning-based seizure detection implemented on an FPGA is proposed in this ...
In high dimension, low sample size (HDLSS) settings, classifiers based on Euclidean distances like the nearest neighbor classifier and the average distance classifier perform quite poorly if differences between locations of the underlying populations get m ...
Superagers are defined as older adults who have youthful memory performance comparable to that of middle-aged adults. Classifying superagers based on the brain connectome using machine learning modeling can provide important insights on the physiology unde ...
In recent years, Machine Learning based Computer Vision techniques made impressive progress. These algorithms proved particularly efficient for image classification or detection of isolated objects. From a probabilistic perspective, these methods can predi ...
A crucial feature of a good scene recognition algorithm is its ability to generalize. Scene categories, especially those related to human made indoor places or to human activities like sports, do present a high degree of intra-class variability, which in t ...
Many diseases are characterized by limitations in mobility, including a wide range of musculoskeletal and neurological conditions. Reduced mobility impacts a patients ability to perform activities of daily living, which in turn reduces health-related quali ...
Classifiers based on sparse representations have recently been shown to provide excellent results in many visual recognition and classification tasks. However, the high cost of computing sparse representations at test time is a major obstacle that limits t ...