Publication

Why H Z-algebra Spectra are Differential Graded Algebras?

Varvara Karpova
2010
Student project
Abstract

In homological algebra, to understand commutative rings R, one studies R-modules, chain complexes of R-modules and their monoids, the differential graded R-algebras. The category of R-modules has a rich structure, but too rigid to efficiently work with homological invariants and homotopy invariant properties. It appears more appropriate to operate in the derived category D(R), which is the homotopy category of differential graded R-modules. Algebra of symmetric spectra offers a generalization of homological algebra. In this frame, spectra are objects that take the place of abelian groups; in particular, the analogue of the initial ring Z is the sphere spectrum S. Tensoring over S endows the category of spectra with a symmetric monoidal smash product, analogous to the tensor product of abelian groups. Thus, spectra are S-modules, and ring spectra, which extend the notion of rings, are the S-algebras. To any discrete ring R, one can associate the Eilenberg-Mac Lane ring spectrum HR, which is commutative if R is.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.