Accumulation-Mode GAA Si NW nFET with sub-5 nm cross-section and high uniaxial tensile strain
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Multi-channel GaN power device, consisting of stacking multiple two-dimensional-electron-gas (2DEG) channels, has been demonstrated to achieve unprecedented on-state performance while maintaining high breakdown voltage (VBR). However, the large carrier den ...
Gallium Nitride (GaN) is one of the most promising materials for high frequency power switching due to its exceptional properties such as large saturation velocity, high carrier mobility, and high breakdown field strength. The high switching frequency of G ...
Silicon transistor scaling is approaching its end and a transition to novel materials and device concepts is more than ever essential. High-mobility compound semiconductors are considered promising candidates to replace silicon, targeting low-power logic a ...
Gallium Nitride (GaN) is a wonder material which has widely transformed the world by enabling
energy-efficient white light-emitting diodes. Over the past decade, GaN has also emerged as one
of the most promising materials for developing power devices which ...
A 3-D full-band particle Monte Carlo (MC) simulator, with full electron and phonon dispersion and a 2-D quantum correction is self-consistently coupled to a phonon MC simulator. The coupling entails feeding the phonon data obtained from the 3-D electrical ...
Field-effect transistors (FETs) have established themselves as a leading platform for electrical detection of chemical and biological species. Their advantages over other optical, mechanical sensing platforms are attributed to being miniaturizable, mechani ...
Two-dimensional (2D) materials have received tremendous research attention recently, as they possess peculiar physical properties in their monolayer and few-layer forms, which further lead to novel applications. A wide range of 2D materials covers insulato ...
In this paper, we propose an accurate method to extract the free carrier mobility in FETs. This derivation relies only on the drift-diffusion transport model without the need to predefine the gate-voltage-mobility dependence. This approach has been assesse ...
Institute of Electrical and Electronics Engineers2017
Two-dimensional materials are emerging as a promising platform for ultrathin channels in field-effect transistors. To this aim, novel high-mobility semiconductors need to be found or engineered. Although extrinsic mechanisms can in general be minimized by ...
Semiconductor nanowires are interesting building blocks for a variety of electronic and optoelectronic applications, and they provide an excellent platformto probe fundamental physical effects. For the realization of nanowire based devices, a deep understa ...