Characteristic function (probability theory)In probability theory and statistics, the characteristic function of any real-valued random variable completely defines its probability distribution. If a random variable admits a probability density function, then the characteristic function is the Fourier transform of the probability density function. Thus it provides an alternative route to analytical results compared with working directly with probability density functions or cumulative distribution functions.
Table of thermodynamic equationsCommon thermodynamic equations and quantities in thermodynamics, using mathematical notation, are as follows: List of thermodynamic propertiesThermodynamic potentialFree entropy and Defining equation (physical chemistry) Many of the definitions below are also used in the thermodynamics of chemical reactions. Heat capacity and Thermal expansion Thermal conductivity The equations in this article are classified by subject. where kB is the Boltzmann constant, and Ω denotes the volume of macrostate in the phase space or otherwise called thermodynamic probability.
Copyright infringementCopyright infringement (at times referred to as piracy) is the use of works protected by copyright without permission for a usage where such permission is required, thereby infringing certain exclusive rights granted to the copyright holder, such as the right to reproduce, distribute, display or perform the protected work, or to make derivative works. The copyright holder is typically the work's creator, or a publisher or other business to whom copyright has been assigned.
Copyright symbolThe copyright symbol, or copyright sign, (a circled capital letter C for copyright), is the symbol used in copyright notices for works other than sound recordings. The use of the symbol is described by the Universal Copyright Convention. The symbol is widely recognized but, under the Berne Convention, is no longer required in most nations to assert a new copyright. In the United States, the Berne Convention Implementation Act of 1988, effective March 1, 1989, removed the requirement for the copyright symbol from U.
CircleA circle is a shape consisting of all points in a plane that are at a given distance from a given point, the centre. The distance between any point of the circle and the centre is called the radius. Usually, the radius is required to be a positive number. A circle with (a single point) is a degenerate case. This article is about circles in Euclidean geometry, and, in particular, the Euclidean plane, except where otherwise noted. Specifically, a circle is a simple closed curve that divides the plane into two regions: an interior and an exterior.
Analyticity of holomorphic functionsIn complex analysis, a complex-valued function of a complex variable : is said to be holomorphic at a point if it is differentiable at every point within some open disk centered at , and is said to be analytic at if in some open disk centered at it can be expanded as a convergent power series (this implies that the radius of convergence is positive). One of the most important theorems of complex analysis is that holomorphic functions are analytic and vice versa.
Holomorphic functionIn mathematics, a holomorphic function is a complex-valued function of one or more complex variables that is complex differentiable in a neighbourhood of each point in a domain in complex coordinate space Cn. The existence of a complex derivative in a neighbourhood is a very strong condition: it implies that a holomorphic function is infinitely differentiable and locally equal to its own Taylor series (analytic). Holomorphic functions are the central objects of study in complex analysis.
Cumulative distribution functionIn probability theory and statistics, the cumulative distribution function (CDF) of a real-valued random variable , or just distribution function of , evaluated at , is the probability that will take a value less than or equal to . Every probability distribution supported on the real numbers, discrete or "mixed" as well as continuous, is uniquely identified by a right-continuous monotone increasing function (a càdlàg function) satisfying and .
Intensive and extensive propertiesPhysical properties of materials and systems can often be categorized as being either intensive or extensive, according to how the property changes when the size (or extent) of the system changes. According to IUPAC, an intensive quantity is one whose magnitude is independent of the size of the system, whereas an extensive quantity is one whose magnitude is additive for subsystems. The terms "intensive and extensive quantities" were introduced into physics by German writer Georg Helm in 1898, and by American physicist and chemist Richard C.
Non-analytic smooth functionIn mathematics, smooth functions (also called infinitely differentiable functions) and analytic functions are two very important types of functions. One can easily prove that any analytic function of a real argument is smooth. The converse is not true, as demonstrated with the counterexample below. One of the most important applications of smooth functions with compact support is the construction of so-called mollifiers, which are important in theories of generalized functions, such as Laurent Schwartz's theory of distributions.