Numerical methods for partial differential equationsNumerical methods for partial differential equations is the branch of numerical analysis that studies the numerical solution of partial differential equations (PDEs). In principle, specialized methods for hyperbolic, parabolic or elliptic partial differential equations exist. Finite difference method In this method, functions are represented by their values at certain grid points and derivatives are approximated through differences in these values.
Computational complexity theoryIn theoretical computer science and mathematics, computational complexity theory focuses on classifying computational problems according to their resource usage, and relating these classes to each other. A computational problem is a task solved by a computer. A computation problem is solvable by mechanical application of mathematical steps, such as an algorithm. A problem is regarded as inherently difficult if its solution requires significant resources, whatever the algorithm used.
Elementary reactionAn elementary reaction is a chemical reaction in which one or more chemical species react directly to form products in a single reaction step and with a single transition state. In practice, a reaction is assumed to be elementary if no reaction intermediates have been detected or need to be postulated to describe the reaction on a molecular scale. An apparently elementary reaction may be in fact a stepwise reaction, i.e. a complicated sequence of chemical reactions, with reaction intermediates of variable lifetimes.
Likelihoodist statisticsLikelihoodist statistics or likelihoodism is an approach to statistics that exclusively or primarily uses the likelihood function. Likelihoodist statistics is a more minor school than the main approaches of Bayesian statistics and frequentist statistics, but has some adherents and applications. The central idea of likelihoodism is the likelihood principle: data are interpreted as evidence, and the strength of the evidence is measured by the likelihood function.
Logarithmic differentiationIn calculus, logarithmic differentiation or differentiation by taking logarithms is a method used to differentiate functions by employing the logarithmic derivative of a function f, The technique is often performed in cases where it is easier to differentiate the logarithm of a function rather than the function itself. This usually occurs in cases where the function of interest is composed of a product of a number of parts, so that a logarithmic transformation will turn it into a sum of separate parts (which is much easier to differentiate).
Power ruleIn calculus, the power rule is used to differentiate functions of the form , whenever is a real number. Since differentiation is a linear operation on the space of differentiable functions, polynomials can also be differentiated using this rule. The power rule underlies the Taylor series as it relates a power series with a function's derivatives. Let be a function satisfying for all , where . Then, The power rule for integration states that for any real number . It can be derived by inverting the power rule for differentiation.
Chain ruleIn calculus, the chain rule is a formula that expresses the derivative of the composition of two differentiable functions f and g in terms of the derivatives of f and g. More precisely, if is the function such that for every x, then the chain rule is, in Lagrange's notation, or, equivalently, The chain rule may also be expressed in Leibniz's notation. If a variable z depends on the variable y, which itself depends on the variable x (that is, y and z are dependent variables), then z depends on x as well, via the intermediate variable y.
Scoring algorithmScoring algorithm, also known as Fisher's scoring, is a form of Newton's method used in statistics to solve maximum likelihood equations numerically, named after Ronald Fisher. Let be random variables, independent and identically distributed with twice differentiable p.d.f. , and we wish to calculate the maximum likelihood estimator (M.L.E.) of . First, suppose we have a starting point for our algorithm , and consider a Taylor expansion of the score function, , about : where is the observed information matrix at .
Notation for differentiationIn differential calculus, there is no single uniform notation for differentiation. Instead, various notations for the derivative of a function or variable have been proposed by various mathematicians. The usefulness of each notation varies with the context, and it is sometimes advantageous to use more than one notation in a given context. The most common notations for differentiation (and its opposite operation, the antidifferentiation or indefinite integration) are listed below.
All models are wrongAll models are wrong is a common aphorism and anapodoton in statistics; it is often expanded as "All models are wrong, but some are useful". The aphorism acknowledges that statistical models always fall short of the complexities of reality but can still be useful nonetheless. The aphorism originally referred just to statistical models, but it is now sometimes used for scientific models in general. The aphorism is generally attributed to the statistician George Box. The underlying concept, though, predates Box's writings.