**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of GraphSearch.

Publication# Higgs couplings in composite models

Abstract

We study Higgs couplings in the composite Higgs model based on the coset SO(5)/SO(4). We show that the couplings to gluons and photons are insensitive to the elementary-composite mixings and thus not affected by light fermionic resonances. Moreover, at leading order in the mixings the Higgs couplings to tops and gluons, when normalized to the Standard Model (SM), are equal. These properties are shown to be direct consequences of the Goldstone symmetry, of the partial compositeness structure and of the assumption of CP invariance. In particular, they are independent of the details of the elementary-composite couplings, and they are also insensitive to derivative interactions of the Higgs with the composite resonances. We support our conclusions with an explicit construction where the SM fermions are embedded in the 14-dimensional representation of SO(5).

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related concepts

Loading

Related publications

Loading

Related MOOCs

Loading

Related MOOCs

Related concepts (5)

No results

Related publications (2)

Standard Model

The Standard Model of particle physics is the theory describing three of the four known fundamental forces (electromagnetic, weak and strong interactions – excluding gravity) in the universe and classifying all known elementary particles. It was developed in stages throughout the latter half of the 20th century, through the work of many scientists worldwide, with the current formulation being finalized in the mid-1970s upon experimental confirmation of the existence of quarks.

Higgs boson

The Higgs boson, sometimes called the Higgs particle, is an elementary particle in the Standard Model of particle physics produced by the quantum excitation of the Higgs field, one of the fields in particle physics theory. In the Standard Model, the Higgs particle is a massive scalar boson with zero spin, even (positive) parity, no electric charge, and no colour charge that couples to (interacts with) mass. It is also very unstable, decaying into other particles almost immediately upon generation.

Goldstone boson

In particle and condensed matter physics, Goldstone bosons or Nambu–Goldstone bosons (NGBs) are bosons that appear necessarily in models exhibiting spontaneous breakdown of continuous symmetries. They were discovered by Yoichiro Nambu in particle physics within the context of the BCS superconductivity mechanism, and subsequently elucidated by Jeffrey Goldstone, and systematically generalized in the context of quantum field theory. In condensed matter physics such bosons are quasiparticles and are known as Anderson–Bogoliubov modes.

Loading

Loading

Effective Field Theories have changed our understanding of Quantum Field Theories. This thesis shows several applications of this powerful tool in the context of the Standard Model and for searches of

We use an effective Lagrangian approach to address the question of the dynamics of electroweak symmetry breaking in the Standard Model (SM) and its relation to the hierarchy problem. Composite Higgs m