Tangent-based manifold approximation with locally linear models
Related publications (37)
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
The goal of this thesis is the development and the analysis of numerical methods for problems where the unknown is a curve on a smooth manifold. In particular, the thesis is structured around the three following problems: homotopy continuation, curve inter ...
This contribution presents a model order reduction framework for real-time efficient solution of trimmed, multi-patch isogeometric Kirchhoff-Love shells. In several scenarios, such as design and shape optimization, multiple simulations need to be performed ...
E. E. Floyd showed in 1973 that there exist only two nontrivial cobor-dism classes that contain manifolds with three cells, and that they lie in dimen-sions 10 and 5. We prove that there is an action of the cyclic group C2 on the 10-dimensional Floyd manif ...
We prove equidistribution at shrinking scales for the monochromatic ensemble on a compact Riemannian manifold of any dimension. This ensemble on an arbitrary manifold takes a slowly growing spectral window in order to synthesize a random function. With hig ...
We consider model order reduction of parameterized Hamiltonian systems describing nondissipative phenomena, like wave-type and transport dominated problems. The development of reduced basis methods for such models is challenged by two main factors: the ric ...
We study the evolution equation where is the Dirichlet-Neumann operator of a decreasing family of Riemannian manifolds with boundary . We derive a lower bound for the solution of such an equation, and apply it to a quantitative density estimate for the res ...
In this thesis, we present a Riemannian framework for the solution of high-dimensional optimization problems with an underlying low-rank tensor structure. Here, the high-dimensionality refers to the size of the search space, while the cost function is scal ...
This article presents an overview of robot learning and adaptive control applications that can benefit from a joint use of Riemannian geometry and probabilistic representations. The roles of Riemannian manifolds, geodesics and parallel transport in robotic ...
In many signal processing, machine learning and computer vision applications, one often has to deal with high dimensional and big datasets such as images, videos, web content, etc. The data can come in various forms, such as univariate or multivariate time ...
Mining useful clusters from high dimensional data has received sig- nificant attention of the signal processing and machine learning com- munity in the recent years. Linear and non-linear dimensionality reduction has played an important role to overcome th ...