Plastic deformation by conservative shear-coupled migration of tilt boundaries with intergranular nano-cracks or precipitates
Related publications (37)
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Metal plasticity is an inherently multiscale phenomenon due to the complex long-range field of atomistic dislocations that are the primary mechanism for plastic deformation in metals. Atomistic/Continuum (A/C) coupling methods are computationally efficient ...
To reveal the operating mechanisms of plastic deformation in an FCC high-entropy alloy, the activation volumes in CrMnFeCoNi have been measured as a function of plastic strain and temperature between 77 K and 423 K using repeated load relaxation experiment ...
Oxide Dispersed Strengthened (ODS) ferritic stainless steels present well-known fine grains microstructures where dislocation movement is hindered by a dense precipitation of nano-oxides particles. Previous research, on the thermomechanical behavior at hig ...
Cellular metallic materials have emerged as a new promising class of materials due to their lightweight porous structures and advanced multi-functional properties. Originally limited to random metallic foams, modern lithography techniques have enabled the ...
In this study, the hot deformation behavior of an Al-1% Mg alloy with very coarse initial grain size was investigated in terms of flow stress evolution and grain refinement mechanism. The large grain size was employed to study the traditional continuous dy ...
The mechanical model of the critical shear crack theory (CSCT) has been used in the past to investigate a number of shear-related problems, such as punching of slab–column connections with and without transverse reinforcement. In this paper, a discussion o ...
The tensile elongation of an < 011 > oriented columnar nanocrystalline pure iron structure at a temperature of 300 K has been simulated by molecular dynamics (MD). The simulated sample contains 4.3 x 10(6) atoms and has been subject to free elongation alon ...
Nanocrystalline (NC) metals have attracted widespread interest in materials science due to their high strength compared to coarse-grained counterparts. It is well know that during uniaxial deformation, the stress-strain behaviour exhibits an extraordinary ...
Integrated circuit packaging technology has become a prime design consideration for the develop-ment of electronic system concepts. One key issue is the bonding layer between chip and substrate. Currently, high-lead solder materials are being used, which a ...
Different Au-Ag-Cu samples have been studied by mechanical spectroscopy. Both polycrystals and bi-crystals show a relaxation peak at 800 K, accompanied by an elastic modulus change. Since this peak is absent in single crystals it is related to the presence ...
Polska Akad Nauk, Polish Acad Sciences, Inst Metall & Mater Sci Pas2015