Publication

Single-Supply 3T Gain-Cell for Low-Voltage Low-Power Applications

Abstract

Logic compatible gain cell (GC) embedded DRAM (eDRAM) arrays are considered an alternative to SRAM due to their small size, non-ratioed operation, low static leakage, and 2-port functionality. However, traditional GC-eDRAM implementations require boosted control signals in order to write full voltage levels to the cell to reduce the refresh rate and shorten access times. These boosted levels require either an extra power supply or on-chip charge pumps, as well as non-trivial level shifting and toleration of high voltage levels. In this paper, we present a novel, logic compatible, 3T GC-eDRAM bitcell that operates with a single supply voltage and provides superior write capability to conventional GC structures. The proposed circuit is demonstrated with a 2kb memory macro that was designed and fabricated in a mature 0.18um CMOS process, targeted at low-power, energy-efficient applications. The test array is powered with a single supply of 900mV, showing an 0.8ms worst-case retention time, a 1.3ns write-access time, and 2.4pW/bit of retention power. The proposed topology provides a bitcell area reduction of 43%, as compared to a redrawn 6T SRAM in the same technology, and an overall macro area reduction of 67% including peripherals.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.