Solving the Shortest Vector Problem in 2^n Time via Discrete Gaussian Sampling
Related publications (59)
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Optimization is a fundamental tool in modern science. Numerous important tasks in biology, economy, physics and computer science can be cast as optimization problems. Consider the example of machine learning: recent advances have shown that even the most s ...
The central task in many interactive machine learning systems can be formalized as the sequential optimization of a black-box function. Bayesian optimization (BO) is a powerful model-based framework for \emph{adaptive} experimentation, where the primary go ...
In this thesis we give new algorithms for two fundamental graph problems. We develop novel ways of using linear programming formulations, even exponential-sized ones, to extract structure from problem instances and to guide algorithms in making progress. S ...
Many modern services need to routinely perform tasks on a large scale. This prompts us to consider the following question:How can we design efficient algorithms for large-scale computation?In this thesis, we focus on devising a general strategy to addr ...
The security of public-key cryptography relies on well-studied hard problems, problems for which we do not have efficient algorithms. Factorization and discrete logarithm are the two most known and used hard problems. Unfortunately, they can be easily solv ...
In the first part of this two-part paper we show that the branch-flow convexification of the OPF problem is not exact and that the ADMM-based decomposition of the OPF fails to converge in specific scenarios. Therefore, there is a need to develop algorithms ...
We present an iterative retrieval algorithm based on data constraint for ultrashort pulse characterization using dispersion scan (d-scan). The proposed algorithm is much faster and leads to a drastic reduction of retrieval times, but, compared to the stand ...
Expectation propagation (EP) is a widely successful algorithm for variational inference. EP is an iterative algorithm used to approximate complicated distributions, typically to find a Gaussian approximation of posterior distributions. In many applications ...
Inspired by applications in sports where the skill of players or teams competing against each other varies over time, we propose a probabilistic model of pairwise-comparison outcomes that can capture a wide range of time dynamics. We achieve this by replac ...
We discuss the 4pt function of the critical 3d Ising model, extracted from recent conformal bootstrap results. We focus on the non-gaussianity Q - the ratio of the 4pt function to its gaussian part given by three Wick contractions. This ratio reveals signi ...